
BTS6120_Listing
.TITLE SBC6120 ROM Monitor

; Copyright (C) 2001-2003 by R. Armstrong, Milpitas, California.
; Copyright (C) 1983 by R. Armstrong, Indianapolis, Indiana.
;
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License along
; with this program; if not, write to the Free Software Foundation, Inc.,
; 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;

; This is the ROM monitor for the SBC6120 computer system, which is a Harris
; HM6120 (a PDP-8 for all practical purposes) microprocessor based single board
; computer. The SBC6120 is intended as a platform for developing other HM6120
; systems and experimenting with various ideas for peripherals, and this gives
; it a rather eclectic mix of hardware:
;
; * 64KW (that's 64K twelve bit WORDS) of RAM - 32KW for panel memory and
; 32KW for conventional memory.
;
; * 8KW of EPROM used for bootstrapping - it contains this software.
;
; * Up to 2Mb (real eight bit bytes this time) of battery backed up,
; non-volatile SRAM used as a RAM disk for OS/8. The RAM disk can be
; mapped into the HM6120 panel memory space.
;
; * A fairly elaborate memory management system which controls the mapping
; of RAM, EPROM and RAM disk into panel memory.
;
; * A real, straight-8, compatible console terminal interface. The control
; logic is implemented in a GAL and no 6121 is used (as it is in both
; models of DECmate).
;
; * A single digit octal display used to show POST error codes.
;
; * An IDE disk interface, implemented by a 8255 PPI
;
; This particular piece of software started life in 1983 as a bootstrap
; program for an elaborate Intersil IM6100 system planned by the author. The
; software was developed and tested on an 6100 emulator running on a
; DECsystem-10, but it never saw any actual hardware. Although I built several
; simpler 6100 based systems, the one intended for this software proved to be
; too elaborate and complex and was never built. Until now, that is...

.HM6120

.STACK PAC1, POP1, PPC1, RTN1

.NOWARN F
� .TITLE BTS6120 Memory Layout

; The EPROM in the SBC6120 is only 8K twelve bit words, so the entire code
; for BTS6120 must fit within fields zero and one. While it's executing,
; however, there is a full 32K of panel RAM available for BTS6120. Currently
; BTS6120 doesn't use fields two thru seven of panel RAM and these are free.
; They could be used by an OS/8 program via the Copy Memory PR0 function, if
; desired.

; FIELD 0
; Page Usage
; ----- --
; 00000 data & initialized constants
; 00200 SYSINI part 2, later overwritten by the command buffer

Page 1

BTS6120_Listing
; 00400 command line parsing & error reporting routines
; 00600 RePeat, Terminal, VErsion and HElp commands
; 01000 Examine and Deposit commands
; 01200 examine and deposit subroutines
; 01400 Block Move, ChecKsum, Clear and Fill Memory commands
; 01600 Word Search and Breakpoint List commands
; 02000 Breakpoint set and Remove commands and breakpoint subroutines
; 02200 Proceed, Continue, SIngle step, TRace, Reset ans EXecute commands
; 02400 Boot sniffer, Boot,
; 02600 Partition Map command, and Disk Formatter Pass 1
; 03000 Disk formatter Pass 2, Disk Format, and RAM Disk Format commands
; 03200 BIN (binary paper tape image) loader and LP command
; 03400 Disk (RAM and IDE) Dump and Load commands
; 03600 Disk buffer ASCII dump and load subroutines
; 04000 Partition Copy command
; 04200
; 04400
; 04600
; 05000
; 05200
; 05400
; 05600
; 06000
; 06200 SIXBIT, ASCII, decimal, and octal terminal output
; 06400 address (15 bit) arithmetic, parsing and output
; 06600 keyword scaner and search, decimal and octal input
; 07000 miscellaneous formatted terminal input and output
; 07200 command line scanner
; 07400 terminal input and output primitives
; 07600 control panel entry and context save

; FIELD 1
; Page Usage
; ----- --
; 10000 SYSINI part 1, later overwritten by field 1 variables
; 10200 ROM monitor call (PR0) processor
; 10400 RAM disk R/W, pack/unpack, and battery test routines
; 10600 RAM disk address calculation and diagnostic tests
; 11000 IDE disk initialization and ATA IDENTIFY DEVICE command
; 11200 IDE sector read/write, LBA calculation, wait for READY or DRQ
; 11400 IDE read/write sector buffer, initialize partition map
; 11600 Partition map functions, IDE I/O PR0 call, read/write IDE registers
; 12000 I/O buffer management, Memory Moce PR0 call, cross field calling
; 12200
; 12400
; 12600
; 13000
; 13200
; 13400 to 17377 are used by command tables, error messages and help text
; 17400 to 17777 are used as a temporary buffer for disk I/O
� .TITLE Edit History

; 1 -- Change documentation of ER and DR commands to reflect the
; new format (E <name> and D <name> <value).
;
; 2 -- Change all the old .SUBTTLs to .TITLE, and remove all .EJECT
; pseudo-ops (they are not needed with .TITLE).
;
; 3 -- Invent TDECNW decimal typeout routine.
;
; 4 -- Rename the OUTSTR routine (type an ASCIZ string) to TASCIZ.
; Invent the new OUTSTR (type a SIXBIT string), TSIXW, and
; TSIXC routines. Change all messages from ASCII to SIXBIT to
; conserve space.
;
; 5 -- Invert the HELLO routine and the VE command to type the
; system name and version on startup and command.
;
; 6 -- Remove the SE (set) command and invent the TF, TS and TW
; commands to take its place...
;

Page 2

BTS6120_Listing
; 7 -- Insure that the terminal parameters (width, page size, and
; filler class) get initialized to the assembly parameters
; defined for that purpose (FTPAGE, FTFILL and FTWIDTH).
;
; 10 -- Make a width value of zero disable the automatic return
; feature (so that returns are never inserted).
;
; 11 -- Invent the SM command to set the serial line unit mode
; (baud rate, character format, etc).
;
; 12 -- Correct an off by one errors in the BM and CK commands.
; Also, make both of these commands check for end of line.
;
; 13 -- Invent the MEMERR routine to type out ?MEM ERR messages.
; This is called whenever memory cannot be written properly.
;
; 14 -- Invent the DANDV routine to deposit and verify in main
; memory. This is called by all routines which change memory.
;
; 15 -- Invent new routines to process 15 bit addresses: RDADDR,
; NXTADR, TSTADR, and the ?WRAP AROUND error message.
;
; 16 -- Invent the RANGE routine to read address ranges and
; change the EXAMINE command to use it (note that this changes
; the syntax of examine from $E 0 1 to $E 0<1).
;
; 17 -- Make monitor commands accept trailing blanks at the end of
; a line without errors...
;
; 20 -- Revise the deposit command to use 15 bit address routines.
; Also make deposit require a ">" character between the
; address (or register name) and the data (instead of a
; space).
;
; 21 -- Update the BM command to use the new 15 bit addressing.
; This now allows transfers to copy more than 4K, and to
; cross field boundries. Also, make it illegal for the source
; address to increment out of field 7.
;
; 22 -- Update the CK command for 15 bit addressing. This makes it
; possible to checksum more than 4K of memory in one command.
;
; 23 -- Move the RDMEM routine to page 6400 (the page it was on had
; 0 words free!).
;
; 24 -- Invent a RAM location KEY and store the WS command search
; key there (not in VALUE). This fixes problems with the WS
; command interacting with RDMEM.
;
; 25 -- Make the WS command apply the mask to the search key too.
; Also, make WS poll the keyboard so that the operator may
; control-C out of a long search.
;
; 26 -- Fix a few bugs in the BM command (these only occur when
; transfers cross memory fields). Also change the syntax of
; the command to accept a source address range (instead of
; a destination address range).
;
; 27 -- Change the name of the SI command to TR (TRace). Then change
; the old SN (single instruction with no register output) to
; be SI.
;
; 30 -- Re-write the examine register to to save space.
;
; 31 -- Move all the register name strings to the text page.
; Re-write the register typeout routines to take less space.
;
; 32 -- Make the examine command accept multiple operands seperated
; by commas.
;
; 33 -- Implement the memory diagnostic routines (address test and
; data test) and the MD command to execute them.

Page 3

BTS6120_Listing
;
; 34 -- Invent the DEVERR routine to report device errors. Also,
; re-write MEMERR to share as much code with deverr as
; possible.
;
; 35 -- Make the memory data and address diagnostics interruptable
; with a control-C (since they take a long time to execute).
;
; 36 -- Invent the REGTST routine to test hardware registers. This
; is used to implement hardware diagnostics.
;
; 37 -- Implement the DPTEST routine to test hardware data paths
; for faults.
;
; 40 -- Implement the EX command (to execute IOT instructions).
;
; 41 -- Implement the basic BIN loader routine (BINLOD).
;
; 42 -- Re-arrange code to more tightly pack memory pages (and free
; another page of memory).
;
; 43 -- Re-define all IOT instructions to agree with the actual
; hardware.
;
; 44 -- Re-write the CP trap and system initialization routines to
; work correctly with the latest hardware design (including
; the auto-start switches).
;
; 45 -- Add the HALT instruction trap routine (it types out the
; message %HALTED @ faaaa)...
;
; 46 -- Ask the user before running diagnostics at startup (even
; if he has enabled them via the auto-start switches).
;
; 47 -- Implement the TRAP routine to handle trapped IOTs.
;
; 50 -- Add the code to emulate a KL8E (via trapped IOTs).
;
; 51 -- Fix a bug in the CP trap routine which prevented it from
; recognizing SI traps correctly.
;
; 52 -- Make sure the TR command types out the contents of the IR
; correctly (add a CLA in an opportune location).
;
; 53 -- Make sure the CONT routine correctly restores the CPU
; registers (add another CLA !!!).
;
; 54 -- Revise the monitor command summary in the introduction to
; be more up to date.
;
; 55 -- Remove the optional count operand from the TR (trace)
; command and always make it execute one instruction instead.
; (The user can always combine it with the RP command to get
; more than one.)
;
; 56 -- Make the BPT instruction use opcode 6077...
;
; 57 -- The BPT instruction is a trapped instruction, but the
; CP entry routine removes breakpoints before the TRAP
; routine is called. Thus TRAP can nenver identify a BPT
; instruction. Solution: don't remove breakpoints in the
; CP routine, but do it in all the routines that it calls
; (except TRAP, of course).
;
; 60 -- Make the BPTINS routine call RDMEM instead of reading memory
; itself.
;
; 61 -- Fix the P command so that other commands after it (after
; a ';') will work too. Also, move the P command to the next
; memory page (with CONT) to free space.
;
; 62 -- Add the BT command to run the disk bootstrap (which

Page 4

BTS6120_Listing
; presently just types a message to the effect that the disk
; bootstrap is not implemented).
;
; 63 -- Implement the following routines: CLRCPU (to clear the
; user's CPU registers in RAM), CLRIO (to clear all I/O
; devices via a CAF), and CLRBUS (to clear the external
; bus by asserting the INITIALIZE signal).
;
; 64 -- Add the MR command to perform a master reset of the CPU and
; hardware...
;
; 65 -- Insure that the terminal flag is set after the CLRIO routine
; (to avoid hanging the monitor)...
;
; 66 -- Define the PRL instruction (READ2 FTPIEB) to pulse the CPU
; RUN/HALT flip-flop.
;
; 67 -- Invent the INIT routine to initialize all hardware which is
; important to the monitor (and call it after a hardware reset
; command).
;
; 70 -- Make the CONTinue routine clear the console status and set
; the RUN flip-flop.
;
; 71 -- Invent the IN (initialize) command to completely initialize
; all hardware and software (it is equivalent to pressing the
; RESET button !).
;
; 72 -- Be sure the SLU mode gets initialized properly...
;
; 73 -- Modify the CONOUT routine to timeout the console printer
; flag and force characters out if it dosen't set after a
; reasonable time (this prevents monitor hangs while debugging
; programs which clear the flag).
;
; 74 -- Make the hardware diagnostic routine execute a master
; reset (i.e. the CLEAR routine) after they are finished
; (since they may leave the hardware in a strange state).
;
; 75 -- Change the monitor prompting character to $.
;
; 76 -- Implement the LP command to load paper tapes from the
; console...
;
; 77 -- Initialize both the SLU mode and baud rate correctly when
; the system is reset...
;
; 100 -- Go through the source and put .ORGs in places where they
; have been left out...
;
; After almost 20 years, restart development for the SBC6120 board!
;
; 101 -- A "real" TLS instruction (as the SBC6120 has) doesn't clear
; the AC, the way a "fake" TLS (implemented by a 6101 PIE
; WRITE) does. This causes no end of problems for CONOUT and
; everything that calls it!
;
; 102 -- Remove the terminal filler code (there's no terminal on the
; planet that requires filler characters any more!)
;
; 103 -- Remove the TTY parameters table at TTYTAB. It's still
; possible to set the TTY width and page size with the TW and
; TP commands, but they now default to zero (disabled).
;
; 104 -- Remove the place holder code for IOT trapping and KL8
; emulation. It was never used.
;
; 105 -- Expand the command line buffer to occupy all of RAM page 1,
; and make the stack always fill whatever remains of page 0.
;
; 106 -- Rewrite to use the HM6120 built in hardware stack.
;

Page 5

BTS6120_Listing
; 107 -- Some of the old SYSINI code was still left lying around,
; and this code would clear RAM on startup. This is now a
; bad idea, since it erases all our page zero vectors!
;
; 110 -- Unlike the 6100 software stack simulation, the 6120 PAC1/2
; instructions don't clear the AC. Add a few CLAs to take
; care of this difference.
;
; 111 -- The 6120 stack post decrements after a PUSH, so the stack
; pointer needs to be initialized to the top of the stack,
; not the TOS + 1...
;
; 112 -- Optimize the page zero constants based on the references
; shown in the CREF listing. Add page zero constants for
; popular numerical constants...
;
; 113 -- Do away with the SYNERR link (it's now the same as ZCOMERR).
;
; 114 -- Replace the ERROR link with a simple JMS @ZERROR, and
; reclaim the page 0 RAM it used...
;
; 115 -- Do away with RAMINI and the page zero initialization code.
; It's no longer necessary, since we now initialize all RAM
; from EPROM at startup.
;
; 116 -- Do away with the separate IF, DF and L "registers" and treat
; everything as part of the PS (aka flags) register.
;
; 117 -- Move around, clean up, and generally re-organize the
; E, D, BM, CK, CM and FM commands.
;
; 120 -- Change the examine register command to ER and the deposit
; register command to DR. Make some other general changes
; to the syntax of the E and D commands (e.g. require commas
; between multiple items in the deposit list).
;
; 121 -- Change the address range delimiter to "-".
;
; 122 -- Move around, clean up and generally re-organize another
; block of code; this time everything concerned with break
; points, continue, start, proceed, and CP traps.
;
; 123 -- CONT: needs to use RSP1 to save the monitor's stack pointer,
; not LSP1 !!!
;
; 124 -- If a transition occurs on CPREQ L while we're in panel mode,
; then the 6120 sets the BTSTRP flag in the panel status
; anyway. This will cause an immediate trap back to panel
; mode the instant we try to continue or proceed. The answer
; is to do a dummy PRS before continuing.
;
; 125 -- Move around, clean up and generally re-organize the
; remainder of the code. Move messages and command tables to
; field 1. Change message strings to packed ASCIZ instead of
; SIXBIT.
;
; 126 -- The packed ASCIZ OUTSTR routine still has a few non-stack
; holdovers - a JMS to OUTCHR and a JMP @OUTSTR to return.
; This causes no end of strange symptoms!
;
; 127 -- Use the new \d and \t string escape feature of PALX to put
; the system generation time in the monitor.
;
; 130 -- Start adding RAM disk support - add DISKRD and DISKWR
;
; 131 -- Add MCALL (monitor call, via 6120 PR0 trapped IOT)
;
; 132 -- Add DISKRW ROM call function for OS/8 RAM disk driver
;
; 133 -- We're starting to run short of room on page zero, so move
; some of the temporary variables that are used only by one
; routine to the same page as that routine. Now that we're

Page 6

BTS6120_Listing
; running out of RAM this is possible.
;
; 134 -- Move the breakpoint tables to page 1, field zero and make
; the command buffer that much (about 24 words) smaller.
; Since the breakpoint tables are only addressed indirectly
; anyway, this hardly made a difference to the code...
;
; 135 -- Fold the MEMERR routine into DANDV and simplify it a little
; to save space - just type the good and bad data, and don't
; bother with typing the XOR...
;
; 136 -- TOCT3 types the three most significant digits, not the three
; least significant ! Oooppppssssss....
;
; 137 -- DDUMP uses COUNT to count the words output, but TOCT4 uses
; it to count digits. Oooppssss...
;
; 140 -- Invent the BSETUP routine and rewrite the break point
; functions to use it. This saves many words of memory.
;
; 141 -- Add the Format Disk (FD) command to "format" RAM disk. This
; is really more of a memory diagnostic than a formatter, but
; the name seems appropriate.
;
; 142 -- CALCDA has a off-by-one error that makes it fail for the
; last 21 sectors of the RAM disk.
;
; 143 -- Invent the CONFRM routine and use it to make the Format Disk
; command ask for confirmation before destroying anything.
;
; 144 -- Add the Disk downLoad command (DL). This accepts RAM disk
; images in exactly the same format as output by DD.
;
; 145 -- Add the H (help) command and a very primitive help system
; (it just types out a screen of one line descriptions for
; every monitor command!).
;
; 146 -- Add a trace function to the DISKRW MCALL.
;
; 147 -- Accidentally typed a couple of JMSes when I should have
; typed .PUSHJ!
;
; 150 -- In DLOAD, we have to use SAVCHR to get the break character
; from OCTNW, not GET.
;
; 151 -- IOCLR L (generated by CAF) also clears the console UART,
; which causes garbage if we happen to be transmitting a
; character at the time. The easiest way to fix this is to
; make the CLEAR routine wait for the console flag to set
; (i.e. the transmitter is done) before executing a CAF.
;
; 152 -- The RAM DISK test at TSTUNI doesn't work if the DX pull
; down resistors are removed because it fails to mask the
; SRAM data to eight bits...
;
; 153 -- Add the infrastructure which allows the code to be split
; between field 0 and 1, then move all the low level RAM disk
; I/O and ROM call processing code to field 1.
;
; 154 -- Add SP1 and SP2 to the REGLST output (but it's still not
; possible to deposit in them or examine them individually).
;
; 155 -- Move the ROM checksums from location 7600 to 0200.
;
; 156 -- Change the hardware so that the TIL311 is loaded via the
; 6120 WSR (Write to Switch Register) instruction.
;
; 157 -- Begin adding basic IDE/ATA support.
;
; 160 -- Add the GETRDS (Get RAM Disk Size) and GETBAT (get backup
; battery status) PR0 functions.
;

Page 7

BTS6120_Listing
; 161 -- Fix a few bugs in the IDE code, and the basic drive
; identification on bootup now works.
;
; 162 -- When programming the 8255 IDE interface, we have to change
; the mode (input vs output) _before_ we set up the address
; bits. If we don't then the address bits get cleared by
; the #$&(*# 8255 when the mode is changed!
;
; 163 -- Add Get and Set Disk Partition mapping PR0 subfunctions.
;
; 164 -- Add Get IDE Disk Size subfunction to PR0.
;
; 165 -- Add the Copy Memory subfunction to PR0.
;
; 166 -- Add the last missing bits of IDE disk I/O. We're now ready
; to try out the OS/8 device handler.
;
; 170 -- INIPMP needs to do a CLL to ensure that the link is in a
; known state - otherwise it can sometimes quit too soon!
;
; 171 -- Extend the BOOT command to boot either IDE or RAM disk.
; Add the "boot sniffer" to determine whether a volume
; contains a real bootstrap and use it to make "B" with no
; arguments search for a bootable volume (just like a real
; computer!).
;
; 172 -- The disk download routine needs to call PNLBUF before it
; attempts to write the buffer...
;
; 173 -- Make illegal PR0 functions print a message and return to
; BTS6120 command level. This solves the problem of how to
; skip over the arguments for a call we don't understand.
;
; 174 -- Make the MR (master reset) command initialize the IDE
; drive and reset the partition map.
;
; 175 -- Add the PM command to edit/view the disk partition map.
;
; 176 -- Completely rewrite the RAM disk formatter code to create
; two commands, RF to format a RAM disk an DF to format an
; IDE disk partition.
;
; 177 -- PMEDIT screws up the disk LUN - there's a DCA that should
; have been a TAD!
;
; 200 -- Fix a few bugs in the DF and RF routines - FMTARG is missing
; a .POPJ, and the unit number gets corrupted in FMTARG
; by the TOCT4S routine, which uses WORD.
;
; 201 -- The pin that corresponds to A17 on a 512K chip is an
; alternate chip select on the 128K chips. Worse, this extra
; chip select is active HIGH, which means that A17 must always
; be set before the 128K chips will do anything!
;
; 202 -- Clean up all the help messages and make sure they agree
; with the current state of all the commands.
;
; 203 -- Do away with F1CALL and create PUSHJ1 instead. Both allow
; field 0 routines to call field 1, however the new one takes
; one less word of code at the point of the call, which
; helps a lot on some pages where words are tight.
;
; 204 -- Invent a few more page zero constants and use them to help
; out on a few more pages where space is tight.
;
; 205 -- Make the disk related commands (DL, DD, and DF) verify that
; an IDE disk is really present by checking for DKSIZE != 0.
; Also make the DISKRW PR0 call return error -1 if no disk
; is attached.
;
; [Start porting to the SBC6120 model 2 hardware]
;

Page 8

BTS6120_Listing
; 206 -- Remove all the bicolor LED stuff - it doesn't exist in
; the SBC6120 model 2.
;
; 207 -- The model 2 schematic accidentally switched CS1FX/CS3FX
; and DIOR/DIOW in the IDE interface. Modify the code to
; paramaterize all IDE interface bits and then chage these
; parameters to agree with the real hardware.
;
; 210 -- Remove all the unnecessary CLAs after PPI instructions
; (in the model 2, these IOTs all clear the AC).
;
; 211 -- Fix the timeouts for the console flag and the LP command
; so they're reasonable given the 4.9152Mhz clock of the
; SBC6120 model 2.
;
; [SBC6120 now runs on the Model 2 hardware!]
;
; 212 -- Fix a nasty bug in the LBA calculation!
;
; 213 -- Fix TDECNW to handle unsigned numbers up to 4095
;
; 214 -- Change the "RAM: " in the RAM disk message to "NVR:"
; to avoid confusion with the main memory..
;
; 215 -- Add the PC (partition copy) command.
;
; [End of monitor edit history]
VERSION=215 ; latest edit number
� .TITLE SBC6120 IOTs and Definitions

; The console terminal interface of the SBC6120 is actually straight -8
; compatible, which is a proper subset of the KL8E except that the KCF, TFL,
; KIE and TSK (or SPI, depending on which manual you read!) instructions are
; omitted. Console interrupts are permanently enabled, as they were in the
; original PDP-8. The console interface in the SBC6120 DOES NOT use a 6121,
; so there'll be none of this skip-on-flag-and-clear-it nonsense with KSF or
; TSF!
KSF=6031 ; Skip of console receive flag is set
KCC=6032 ; Clear receive flag and AC
KRS=6034 ; OR AC with receive buffer and DON't clear the flag
KRB=6036 ; Read receive buffer into AC and clear the flag
TSF=6041 ; Skip if the console transmit flag is set
TCF=6042 ; Clear transmit flag, but not the AC
TPC=6044 ; Load AC into transmit buffer, but don't clear flag
TLS=6046 ; Load AC into transmit buffer and clear the flag

; 8255 PPI Interface IOTs...
PRPA=6470 ; read PPI port A
PRPB=6471 ; " " " B
PRPC=6472 ; " " " C
PRCR=6473 ; " " control register
PWPA=6474 ; write PPI port A
PWPB=6475 ; " " " B
PWPC=6476 ; " " " C
PWCR=6477 ; " " control register

; Other SBC6120 instructions...
POST=6440 ; Display a 4 bit POST code
BPT=PR3 ; Breakpoint trap instruction

; Special ASCII control characters that get used here and there...
CHNUL=000 ; A null character (for fillers)
CHCTC=003 ; Control-C (Abort command)
CHBEL=007 ; Control-G (BELL)
CHBSP=010 ; Control-H (Backspace)
CHTAB=011 ; Control-I (TAB)
CHLFD=012 ; Control-J (Line feed)
CHCRT=015 ; Control-M (carriage return)
CHCTO=017 ; Control-O (Suppress output)
CHXON=021 ; Control-Q (XON)
CHCTR=022 ; Control-R (Retype command line)

Page 9

BTS6120_Listing
CHXOF=023 ; Control-S (XOFF)
CHCTU=025 ; Control-U (Delete command line)
CHESC=033 ; Control-[(Escape)
CHDEL=177 ; RUBOUT (Delete)

; OPR microinstructions that load the AC with various special constants...
NL0000=CLA ; all models
NL0001=CLA IAC ; all models
NL0002=CLA CLL CML RTL ; all models
NL2000=CLA CLL CML RTR ; all models
NL3777=CLA CLL CMA RAR ; all models
NL4000=CLA CLL CML RAR ; all models
NL5777=CLA CLL CMA RTR ; all models
NL7775=CLA CLL CMA RTL ; all models
NLM3=NL7775 ; all models
NL7776=CLA CLL CMA RAL ; all models
NLM2=NL7776 ; all models
NL7777=CLA CMA ; all models
NLM1=NL7777 ; all models
NL0003=CLA STL IAC RAL ; PDP-8/I and later
NL0004=CLA CLL IAC RTL ; PDP-8/I and later
NL0006=CLA STL IAC RTL ; PDP-8/I and later
NL6000=CLA STL IAC RTR ; PDP-8/I and later
NL0100=CLA IAC BSW ; PDP-8/E and later
NL0010=CLA IAC R3L ; HM6120 only
� .TITLE SBC6120 Memory Mapping Hardware

; The SBC6120 has three memory subsystems - 64K words of twelve bit RAM,
; 8K words of 12 bit EPROM (actually the EPROM is 16 bits wide, but the
; hardware just throws away the extra four bits), and up to 2Mb of 8 bit
; battery backed up SRAM for a RAM disk.
;
; The HM6120 on the other hand, has only two memory spaces - panel memory
; and main memory, and each of these is limited to 32K words. The SBC6120
; implements a simple memory mapping scheme to allow all three memory
; subsystems to fit in the available address space. Up to four different
; memory maps are possible, although only three are currently implemented.
;
; The memory map in use is selected by four IOT instructions, MM0, MM1
; MM2 and (what else) MM3. Memory map changes take place immediately with
; the next instruction fetch - there's no delay until the next indirect JMP
; the way there is with a CIF instruction.
;
; The four memory maps implemented by the SBC6120 are:
;
; * Map 0 uses the EPROM for all direct memory accesses, including instruction
; fetch, and uses the RAM for all indirect memory accesses. This is the
; mapping mode set by the hardware after a power on reset.
;
; * Map 1 uses the RAM for all direct memory accesses, including instruction
; fetch, and uses the EPROM for all indirect memory references. This mode
; is the "complement" of map 0, and it's used by the panel memory bootstrap
; to copy the EPROM contents to RAM.
;
; * Map 2 uses the RAM for all memory accesses, regardless. This is the
; mapping mode used during almost all operation after booting.
;
; * Map 3 is the same as map 2, except that the RAM disk memory is enabled
; for all indirect accesses. BEWARE - RAM disk memory is only eight bits
; wide and reads and writes to this memory space only store and return the
; lower byte of a twelve bit word. This mode is used only while we're
; accessing the RAM disk.
;
; IMPORTANT! The memory mapping mode affects only 6120 control panel memory
; accesses. Main memory is always mapped to RAM regardless of the mapping
; mode selected.

; DIRECT INDIRECT
; -------- --------

MM0=6400 ; EPROM RAM (automatically selected by a RESET)
MM1=6401 ; RAM EPROM (used during system initialization)

Page 10

BTS6120_Listing
MM2=6402 ; RAM RAM (used almost all the time)
MM3=6403 ; RAM DISK (used to access RAM disk only)
� .TITLE System Startup and POST Codes

; Getting the SBC6120 monitor up and running after a power up is a little
; harder than we might wish. Our first problem is that we're actually
; executing code from the EPROM now, and a lot of the usual PDP-8 techniques
; of "self manipulation" (e.g. a JMS instruction!) won't work because the
; program store isn't writable. Our second problem is that all of panel
; fields 0 and 1 are mapped to EPROM, and there's no RAM anywhere in these
; fields at all, not even in page zero.
;
; Our final problem is that we can't even be sure that all the hardware is
; working correctly at this point. If some part isn't working, for example,
; the RAM, we'd like to provide at least some kind of diagnostic message
; before we end up lost forever. The minimum set of system components that
; this monitor needs to have working before it can print a prompt and execute
; commands is 1) the CPU, 2) the ROM, 3) the RAM, and 4) the console terminal.
;
; This means we need to accomplish two things during a cold boot - first,
; to execute a simple power on self test (aka POST), and second, to copy this
; monitor's code from EPROM to panel RAM where we can execute it without
; restriction.
;
; The SBC6120 has a single digit LED display that the program can set, via
; the POST instruction. At the beginning of each step in testing and
; initialization we set this digit to a particular value, and then if that
; test or startup part fails, we simply halt and the display remains at the
; last value set. The digits and their associated failure modes are:
;
; 7 - CPU failure (or it's not a 6120)
; 6 - panel RAM bootstrap failure
; 5 - RAM checksum failure
; 4 - memory test failure
; 3 - currently unused (reserved for 6121 failure?)
; 2 - console terminal failure
; 1 - panel monitor running (success!)
; 0 - user (main memory) program running
� .TITLE System Startup, Part 1

; This code lives in field one, page zero of the EPROM and it's the first
; thing that gets executed after a power on clear. Its main job is to get
; the SBC6120 memory initialized, which it does it with these steps:
;
; 1 - execute a simple CPU test
; 2 - execute a very simple RAM test
; 3 - copy EPROM to panel RAM
; 4 - verify the firmware checksum
; 5 - execute an extensive test on the remaining memory
;
; After it's done, it jumps to the second phase of initialization, which
; lives in field zero. When this code starts we're in memory mapping mode
; zero, which means that all instructions are being executed from EPROM and
; RAM can be addressed only indirectly. When it finishes, all code will be
; in panel RAM and we'll be running in memory mapping mode two, which means
; that all memory accesses go to RAM and the EPROM is inaccesible.
;
; After system initialization is complete, all this code is over written
; with page zero variables and storage for field one.

.FIELD 1

.PAGE 0

; Location zero of field 1 (and field 0, for that matter) must contain a
; zero for the checksum routine. See the code at ROMCHK: for a discussion.

0000

; The first step is the CPU test, which is trivially simple. We just
; verify that we're actually running on a HM6120 and let it go at that...
SYSINI: POST+7 ; set the POST code to 7

CLA IAC R3L ; Only a 6120 has the R3L instruction
Page 11

BTS6120_Listing
TAD [-10] ; Did we get the right answer?
SZA ; ???
JMP . ; Nope - halt forever

; Before we copy the boot code to panel RAM, do a primitive (and it's really
; primitive!) test of RAM just to make sure there's something there we can
; read and write. Remember that at this point we're using memory map 0, so
; all direct references are to EPROM, but all indirect references are to RAM.

POST+6 ; set the POST code to six
SPD ; be sure we're accessing panel memory now!
CLA ; ...
TAD [2525] ; write an alternating bit pattern
DCA @[ROMCPY] ; ... to RAM location zero
TAD [5252] ; and write the complement to location 1
DCA @[ROMCPY+1] ; ...
TAD @[ROMCPY] ; now read them both back
TAD @[ROMCPY+1] ; and add them up
CMA ; and the result should be -1
SZA ; ????
JMP . ; low RAM failure

; Copy all of the EPROM moving code, which is six words starting at the label
; ROMCPY, from EPROM to exactly the same location in RAM. There's no way to
; use a loop to do this since we don't have any RAM that we can access directly
; to use as a pointer!

TAD ROMCPY ; copy this one word from EPROM
DCA @[ROMCPY] ; ... to RAM
TAD ROMCPY+1 ; and do it for the entire routine
DCA @[ROMCPY+1] ; ...
TAD ROMCPY+2 ; ...
DCA @[ROMCPY+2] ; ...
TAD ROMCPY+3 ; ...
DCA @[ROMCPY+3] ; ...
TAD ROMCPY+4 ; ...
DCA @[ROMCPY+4] ; ...
TAD ROMCPY+5 ; ...
DCA @[ROMCPY+5] ; ...

; Now it gets tricky. At this instant we're still running in EPROM, and the
; first two instructions (at ROMCP0) get executed from EPROM. As soon as we
; execute the MM1 at ROMCPY:, however, the very next instruction is fetched
; from RAM. This should work, because the previous code has copied the six
; words that make up the ROMCPY loop from EPROM to exactly the same location
; in RAM.
;
; The loop the copies an entire field from EPROM to RAM, executing from RAM
; the whole time. It actually over writes itself in the process, but since it
; over writes itself with a copy of the exact same code we should be OK. By
; the time it falls thru the ISZ at the end of the loop, the subsequent code
; should exist in RAM.
;
; After copying field 1, we switch to field zero and jump back to ROMCP0
; to do it again. Although the first time thru we executed ROMCP0 from EPROM,
; the second time thru we execute it from RAM, which is OK because it got
; copied during the first pass.
;
; Say goodbye to memory map 0 - we'll never need it again!

; This loop copies all of a field, except location 0, from EPROM to RAM.
ROMCP0: CLA IAC ; always start with location 1, not zero

DCA @[0] ; save the address pointer here
ROMCPY: MM1 ; (1) address RAM directly, EPROM indirectly

TAD @0 ; (2) and load a word from EPROM
MM2 ; (3) address RAM for all memory accesses
DCA @0 ; (4) and store the word in RAM
ISZ 0 ; (5) have we done an entire field?
JMP ROMCPY ; (6) nope - keep copying
RDF ; which field did we just copy?
CDF 0 ; assume that we'll copy field zero next
SZA CLA ; but did we just copy field zero?
JMP ROMCP0 ; no - go copy it

Page 12

BTS6120_Listing
; When we leave this loop, we're using memory map 2 which means panel RAM
; is used everywhere and the EPROM is inaccessible. We'll stay in this mapping
; mode forever, except when we're accessing the RAM disk.

; Each field of the panel ROM contains a 12 bit checksum, put there by the
; PDP2HEX program and calculated so that the sum of all words in the field,
; including the checksum word, will be zero. Now we'll compute and verify the
; checksum of both RAM fields, which proves that our RAMs work, that the
; EPROMS were programmed correctly, and that we copied them correctly.
;
; It might seem a better to do this before on the EPROMs before we've copied
; them to RAM, but the answer is that it's just impossible to compute a
; checksum using memory map 0 - there's no directly addressible RAM to use for
; address pointers or for storing the sum!
;
; One last subtle point is that we're keeping an address pointer in location
; zero of RAM, which wasn't in the EPROM when PDP2HEX calculated its checksum.
; This actually works by accident (er - excuse me, "Design"), since we keep
; our pointer in location zero of RAM, it will have the value zero when we
; checksum it. Coincidentally, this is exactly the same value that's in
; location zero of the ROM image.

; This loop checksums one RAM field...
POST+5 ; set the POST code to five
CDF 1 ; checksum field 1 first

ROMCHK: CLA IAC ; and start with location 1 (skip zero)
DCA 0 ; ...

ROMCH0: TAD @0 ; add up another word from RAM
ISZ 0 ; have we done an entire field?
JMP ROMCH0 ; nope - keep adding
SZA ; yes - did the checksum pass?
JMP . ; RAM checksum failure
RDF ; get the field we just did
CDF 0 ; and assume we'll do field zero next
SZA CLA ; but did we really just do zero?
JMP ROMCHK ; no - go checksum it now

; The next step is to run a memory test on the remaining fields (2 thru 7)
; of panel memory and all fields of main memory. It's not a very sophisticated
; test - it just writes each memory location with its address in the first pass
; and then reads it back in the second, but it does prove that there's at least
; some memory out there listening.
;
; Before we do that, however, we do an even simpler test to verify that the
; panel data flag is working and that main memory and panel memory are two
; separate and distinct memory spaces...

; Make sure that panel memory and main memory are distinct...
POST+4 ; set the POST code to four
STA ; put -1 in location 0 of panel memory
DCA @[0] ; ...
CPD ; and then put 0 in the same location
DCA @[0] ; ... of main memory
SPD ; back to panel memory
ISZ @[0] ; and increment -1
JMP . ; if it doesn't skip something is wrong

; Test all eight fields of main memory...
; CLA ; and start testing with field zero

CPD ; address main memory again
MEMTS1: JMS FLDTST ; test this field, halt if it's bad

SZA ; have we wrapped around to field 0 again ?
JMP MEMTS1 ; no - test the next field

; Then test only fields 2 thru 7 of panel memory...
SPD ; address panel memory this time
TAD [20] ; start testing with field 2

MEMTS2: JMS FLDTST ; test this field, halt if it's bad
SZA ; ...
JMP MEMTS2 ; ...

; System initialization, part 1, is finished. The remainder of the code
Page 13

BTS6120_Listing
; lives in field zero...

CXF 0
JMP @[SYSIN2]

; This subroutine will test one field of either main memory or panel memory.
; It's a fairly simple minded test - it just writes each location with its
; address in the first pass and then reads it back in the second pass. If the
; test fails it just halts - there is no error return!
FLDTST: 0 ; enter here with the field in the AC

TAD [CDF 0] ; make a CDF instruction out of it
DCA .+1 ; and execute it inline
NOP ; gets over written with a CDF
DCA 0 ; reset the address pointer

FLDTS1: TAD 0 ; write each word with its address
DCA @0 ; ...
ISZ 0 ; have we done all 4K?
JMP FLDTS1 ; nope - keep going
DCA 0 ; yes - reset the address pointer

FLDTS2: TAD 0 ; and make another pass to test
CIA ; ... what we wrote
TAD @0 ; ...
SZA ; does this location contain the right value?
JMP . ; no - just halt
ISZ 0 ; yes - keep going for all 4K
JMP FLDTS2 ; ...
RDF ; get the data field we just tested
TAD [10] ; and increment it for the caller
AND [70] ; remove any overflow bits
JMP @FLDTST ; return the next field to the caller

.PAGE
� .TITLE System Startup, Part 2

; This routine is the second phase of system initialization, and it lives
; in page one of field zero. It's called at the end of the first phase, and
; it will:
;
; 1 - test and initialize any extra hardware (e.g. 6121 chips)
; 2 - test and initialize the console terminal
; 3 - initialize any RAM that needs it
; 4 - print a sign on message
; 5 - jump to the monitor restart address
;
; After this code finishes, the monitor is running and a prompt will have been
; printed on the terminal. This code code gets overwritten immediately by the
; monitor's command line buffer, which also lives in page 1 of field 0.

.FIELD 0

.PAGE 1

; The PDP2HEX program (which converts BIN files into ROM images in Intel
; HEX format) stores a checksum of ROM field 0 in location 00200, which will
; later be used by the POST...
ROMCK0: .BLOCK 1

; Some space is reserved here for initializing the hardware, especially any
; 6121 chips that might be lying around. We don't currently have any of those,
; so we don't worry about it now.
SYSIN2: POST+3 ; set the POST code to three

; The next stage in initialization is to test the console terminal. Since
; the SBC6120 hardware doesn't have a loopback mode we can't really verify that
; data is being sent and received correctly, but we can at least test that the
; flags set and clear at appropriate times. That way we'll know, at last, that
; we won't hang forever if we do a "TLS; JMP .-1" loop.

POST+2 ; set the POST code to two
CLA ; send a null character to the console
TLS ; ...
TSF ; and then wait for the flag to set
JMP .-1 ; waiting forever, if necessary!
TCF ; clear the console flag
TSF ; and then test it again

Page 14

BTS6120_Listing
SKP ; good - it _isn't_ set!
JMP . ; bad - it's still set, so the console fails
TLS ; send another null
TSF ; and be sure it sets one more time
JMP .-1 ; ...

; Now make sure we can clear the keyboard input flag, and that KCC also
; clears the AC. The latter proves that there is at least some hardware out
; there controlling the C lines for the console terminal, although it doesn't
; guarantee that we can receive data.

STA ; Load the AC with -1
KCC ; Clear the keyboard flag and the AC
SZA ; Verify that the AC got cleared
JMP . ; Nope - console test failed!
KSF ; And test the keyboard flag
SKP ; Good - it _isn't_ set!
JMP . ; Bad - the keyboard test failed

; Print a sign on message.
SYSIN3: POST+1 ; the monitor is up and running now

; This code starts up the monitor/bootstrap after a system reset. It
; initializes the monitor RAM, sets up the stack, and jumps to the monitor
; entry point. Since we don't know how we came to be here, this code
; shouldn't make any assumptions about the current state of the hardware!

CXF 0 ; Be sure the IB and DF are both zero
SPD ; Address CP memory with indirect cycles
CLA ; just in case...
TAD [STACK] ; reset the 6120 stack pointer
LSP1 ; ...

; Set the control panel entry vector in 7777 to be a "JMP CPSAVE" instruction.
; We have to do this in a rather awkward way because PALX won't assemble a
; current page reference to CPSAVE unless we're actually on the same page as
; CPSAVE!

TAD [CPSAVE&177 | 5200]
DCA @[7777]

; Do any RAM initialization that needs to be done...
TAD [80.] ; the default terminal width is 80
DCA WIDTH ; ...
DCA LENGTH ; and automatic XOFF is disabled
.PUSHJ @[CLRCPU] ; clear the saved user context
.PUSHJ @[BPTCLR] ; clear the breakpoint tables
JMS @ZPUSHJ1 ; (cross field call)
INIPMP ; initialize the IDE disk partition map

; Type out the system name...
.PUSHJ @ZCRLF ; First start on a new line
.PUSHJ @[HELLO] ; Finally add our name and version

; Now we are ready to initialize the RAM disk array by first testing the
; backup battery and then individually testing each of the four RAM chips to
; determine a) if one is installed, and b) how big it is. IMPORTANT - because
; of the way the DS1321 works, we MUST test the backup battery before any
; other accesses to the RAM disk! The RDTEST routine will automatically
; initialize the RDSIZE array with the size of each RAM disk chip that it
; discovers...

JMS @ZINLMES ; say
RAMMS1 ; "RAM disk: "
JMS @ZPUSHJ1 ; (cross field call)
BATTST ; test the backup battery state
JMS @ZPUSHJ1 ; (cross field call)
RDTEST ; test all four RAM disk units
.PUSHJ @[TDECNW] ; type out the total RAM size
JMS @ZINLMES ; say
RAMMS3 ; "Kb - Battery "
CDF 1 ; the battery OK flag lives in field 1
TAD @[BATTOK] ; get the battery status flag
CDF 0 ; ...
SNA CLA ; is the batery OK?

Page 15

BTS6120_Listing
TAD [BFAMSG-BOKMSG] ; no - say "failed"
TAD [BOKMSG] ; yes - say "OK"
.PUSHJ @[OUTSTR] ; ...
.PUSHJ @ZCRLF ; finish the status report and we're done

; Finally, probe the IDE bus for any drive that might be attached. First
; we have to initialize the 8255 and reset the IDE bus, and then we can send
; an ATA IDENTIFY DEVICE command to the drive. The DISKID routine will
; extract the drive's capacity, in MB, from that and leave the result at
; DKSIZE. DISKID also leaves the first 256 bytes of the drive's response in
; the DSKBUF, and we can use that to type out the drive's make and model,
; which appears there in plain ASCII.

JMS @ZINLMES ; say
IDEMS1 ; "IDE disk: "
JMS @ZPUSHJ1 ; (cross field call)
IDEINI ; initialize the IDE interface
SZL ; is there a drive attached?
JMP SYSIN4 ; nope - quit now
JMS @ZPUSHJ1 ; (cross field call)
DISKID ; send an IDENTIFY DEVICE command to the drive
SZL CLA ; did it work ?
JMP SYSIN4 ; nope - there's no disk there after all
CDF 1 ; disk data lives in field 1
DCA @[DSKBUF+135] ; (make the model string ASCIZ)
TAD @[DKSIZE] ; get the total disk size
CDF 0 ; ...
SNA ; is the disk size zero ?
JMP SYSIN7 ; yes - this disk is "unsupported" !
.PUSHJ @[TDECNW] ; and type it out in decimal
JMS @ZINLMES ; say
IDEMS2 ; "MB"
TAD [DSKBUF+66-1] ; point to the make/model string
.PUSHJ @[TASZF1] ; and type that out, in ASCII
JMP SYSIN5 ; go type a CRLF and we're done

; Here if an unsupported (i.e. one which does not support LBA addressing)
; is detected...
SYSIN7: JMS @ZINLMES ; say

IDEMS4 ; "not supported"
JMP SYSIN5 ; ...

; Here if no IDE disk is detected...
SYSIN4: JMS @ZINLMES ; and say

IDEMS3 ; "NONE"
SYSIN5: .PUSHJ @ZCRLF ; finish the line and we're done

; And we're ready for commands...
JMP @ZRESTA

.PAGE
� .TITLE Field 0 Variables

; Page zero of field zero contains most of the runtime data for the monitor,
; including the saved state of the user (main memory) program. It is purposely
; NOT overlayed by any startup code so that it may also contain initialized
; variables, such as JMP/JMS vectors. Data in this page gets initialized
; automatically when the first phase of system initialization copies the EPROM
; to RAM.

; These words contain the saved state of the main memory (aka user)
; program. The PC gets saved to location zero automatically by the 6120
; on any entry to control panel, and the rest get saved by the code around
; CPSAVE...

.ORG 0000
UPC: .BLOCK 1 ; program counter (saved by the hardware)
UAC: .BLOCK 1 ; accumulator
UFLAGS: .BLOCK 1 ; status (LINK, GT, IF, DF, etc) from GCF
UMQ: .BLOCK 1 ; MQ register
USP1: .BLOCK 1 ; 6120 stack pointer #1
USP2: .BLOCK 1 ; " " " #2
UIR: .BLOCK 1 ; the last main memory instruction to be executed

Page 16

BTS6120_Listing

; Auto-index registers...
.ORG 0010 ; this must be at location 10 !!!

X1: .BLOCK 1 ; the first auto-index register
X2: .BLOCK 1 ; the second auto-index register
X3: .BLOCK 1 ; the third auto-index register
L: .BLOCK 1 ; the command line pointer

.ORG 0020 ; don't put anything else in auto-index locations

; Command parameters...
ADDR: .BLOCK 1 ; the current address
ADRFLD: .BLOCK 1 ; the field of this command
PNLMEM: .BLOCK 1 ; non-zero if ADDR/ADRFLD references panel memory
HIGH: .BLOCK 1 ; the high end of an address range
LOW: .BLOCK 1 ; the low end of an address range
HGHFLD: .BLOCK 1 ; the field of the high address
LOWFLD: .BLOCK 1 ; the field of the low address
VALUE: .BLOCK 1 ; the data word or value
NAME: .BLOCK 1 ; the name of this command
CHKSUM: .BLOCK 1 ; the checksum of memory or tape
SIMFLG: .BLOCK 1 ; non-zero if we're executing a single instruction
SAVCHR: .BLOCK 1 ; a place to save a character

; Terminal parameters...
CTRLO: .BLOCK 1 ; non-zero if output is supressed
XOFF: .BLOCK 1 ; non-zero if output is suspended
HPOS: .BLOCK 1 ; the current horizontal position
VPOS: .BLOCK 1 ; the current vertical position
WIDTH: .BLOCK 1 ; the width of the terminal
LENGTH: .BLOCK 1 ; the number of lines on the screen
IRMA: .BLOCK 1 ; the console flag timeout counter

; Parameters for the repeat command...
REPCNT: .BLOCK 1 ; the number of times to repeat
REPLOC: .BLOCK 1 ; the location to repeat from

; Number I/O locations...
WORD: .BLOCK 1 ; the number being read or written
WORDH: .BLOCK 1 ; the high order bits of the last word read
COUNT: .BLOCK 1 ; the number of digits read or written
DIGITS: .BLOCK 1 ; counts digits for numeric input/output routines

; Storage for RDDUMP, DDDUMP, RLLOAD and DLLOAD, RFRMAT, and DFRMAT...
RECSIZ: .BLOCK 1 ; disk (page, block) size
RECCNT: .BLOCK 1 ; number of records to dump
FMTCNT: .BLOCK 1 ; number of blocks/records processed by FORMAT
CPYSRC=HIGH ; source partition for PC command
CPYDST=LOW ; destination partition for PC command

; Page zero vectors (to save literal space)...
ZOUTCHR: OUTCHR ; type a single character
ZTSPACE: TSPACE ; type a space
ZTOCT4: TOCT4 ; type an octal number
ZTOCT4C: TOCT4C ; type an octal number followed by a CRLF
ZTOCT4S: TOCT4S ; type an octal number followed by a space
ZCRLF: CRLF ; type a carriage return/line feed
ZINLMES: INLMES ; type a string passed in-line
ZSPACMP: SPACMP ; get the next non-blank command character
ZSPACM0: SPACM0 ; get a non-blank character starting with the current
ZBACKUP: BACKUP ; backup the command line pointer
ZEOLTST: EOLTST ; test current character for end of line
ZEOLNXT: EOLNXT ; test the next character for end of line
ZGET: GET ; get the next character from the command line
ZOCTNW: OCTNW ; scan an octal number
ZRANGE: RANGE ; scan an address range (e.g. "0-7777")
ZTSTADR: TSTADR ; compare the HIGH/HGHFLD to LOW/LOWFLD
ZNXTADR: NXTADR ; increment ADDR/ADRFLD
ZRDMEM: RDMEM ; read a word from main or panel memory
ZDANDV: DANDV ; deposit (in memory) and verify
ZRESTA: RESTA ; monitor restart vector
ZCOMERR: COMERR ; report a command syntax error and restart
ZERROR: ERROR ; print an error message and restart

Page 17

BTS6120_Listing
ZPUSHJ1: PUSHJ1 ; call a routine in field 1 and return to field 0

; Page zero constants (to save literal space)...
ZK177: 177 ; used everywhere as a mask for ASCII characters
ZK70: 70 ; used as a mask for data/instruction fields
ZK7: 7 ; yet another mask
ZMSPACE: -" " ; an ASCII space character (or the negative there of)
ZM128: -128. ; record size of RAM disk
ZK7600=ZM128
ZM256: -256. ; record size of IDE disk
ZK7400=ZM256
ZRDPAGE: RDPAGE ; current RAM disk page number in field 1
ZDKRBN: DKRBN ; current IDE disk block number in field 1

; The software stack occupies all of the rest of page zero.
STKSAV: .BLOCK 1 ; the last monitor SP is saved here by CONTINUE
STACK=0177
STKLEN=STACK-. ; Length of the stack (if anybody cares)

; Page one of field zero contains the second phase system initialization
; code, and it's over written by the command line buffer and break point
; tables after we're running.

.ORG 0200

; The PDP2HEX program stores a checksum of ROM field 0 in location 00200,
; and we have to reserve space for it here so it doesn't get overwritten by
; any of our data. See the code at ROMCK0: for more discussion.

.BLOCK 1

; Breakpoint storage...
MAXBPT=8. ; maximum number of breakpoints
BPTADR: .BLOCK MAXBPT ; address assigned to each breakpoint
BPTFLD: .BLOCK MAXBPT ; field of the breakpoint
BPTDAT: .BLOCK MAXBPT ; original data at the breakpoint
BPTEND=BPTADR+MAXBPT-1 ; end of the breakpoint address table

; The command line buffer for INCHWL occupies all that remains of page one...
MAXCMD=0400-. ; space available for the command buffer
CMDBUF: .BLOCK MAXCMD ; and the actual command buffer
� .TITLE Monitor Main Loop

.PAGE 2

; This routine will read commands from the terminal and execute them. It
; can be entered at RESTA to restart after a control-C or a fatal error, and
; at BOOTS after completion of a normal command...
RESTA: SPD ; Insure that CP memory is always selected

CLA ; And be sure the AC is cleared
TAD [STACK] ; Point to the stack
LSP1 ; Clean up the stack pointer
.PUSHJ @ZCRLF ; Be sure the terminal is ready

; Read another command line...
BOOTS: CLA ; ...

TAD [">"] ; Point to the prompt
.PUSHJ @[INCHWL] ; And read a command line
DCA REPCNT ; Clear the repeat counter initially

; Execute the next command...
BOOTS1: .PUSHJ @[NAMENW] ; First identify a command

TAD NAME ; Get the name we read
SNA CLA ; Is this a null command ??
JMP BOOTS2 ; Yes -- just ignore it
TAD [CMDTBL-1] ; Then point to the list of commands
.PUSHJ @[MATCH] ; And look it up

; See if there are more commands on this line...
BOOTS2: TAD L ; Get the pointer to the last character

DCA WORD ; And save it in a non-autoindex location
TAD @WORD ; Get the last character we saw
TAD [-073] ; Was it a command seperator ??

Page 18

BTS6120_Listing
SNA CLA ; ????
JMP BOOTS1 ; Yes -- go execute another command

; See if this command needs to be repeated...
STA ; Load the AC with -1
TAD REPCNT ; And add to the repeat counter
SPA ; Is the counter positive ??
JMP BOOTS ; No -- go read anothter line
DCA REPCNT ; Yes -- save the new count
TAD REPLOC ; And get the location to start from
DCA L ; Backup the command scanner
JMP BOOTS1 ; Then go execute this command again

� .TITLE Command Error Processing

; This routine is called when a syntax error is found in the command and it
; echo the part of the command which has already been scanned inside question
; marks (very much like TOPS-10 used to do!). After that, the monitor is
; restarted (i.e. the stack is cleaned up and another prompt issued).
COMERR: CLA ; Ignore the contents of the AC

DCA @L ; And mark the end of what was actually scanned
.PUSHJ @[TQUEST] ; Type the first question mark
TAD [CMDBUF-1] ; And point to the command line
.PUSHJ @[TASCIZ] ; Echo that
.PUSHJ @[TQUEST] ; Then type another question
JMP RESTA ; Go restart the monitor

; This routine prints an error message and then restarts the monitor. Unlike
; nearly every other routine in the monitor this one is called via a JMS
; instruction rather than a .PUSHJ, and that so that the address of the error
; message can be passed in line, in the word after the JMS.
;
; CALL:
; JMS @ZERROR
; <address of error message>
ERROR: 0 ; enter here with a JMS

CLA ; the AC is unknown here
.PUSHJ @[TQUEST] ; always type a question mark
TAD @ERROR ; pick up the address of the message
.PUSHJ @[OUTSTR] ; and type that out too
JMP @ZRESTA ; restart the monitor and read another command

� .TITLE Get Next Command Character

; This routine will get the next character from the command line. If the
; character is lower case, it is folded to upper case. If the character is a
; TAB, it is converted to a space. And, if the character is ";" or "!" (the
; start of a comment) it is converted to zero (end of line). Finally, the
; character is returned in both the AC and location SAVCHR.
GET: CLA ; Be sure the AC is safe to use

TAD @L ; Get another character from the line
TAD [-"A"-40] ; Compare this character to lower case A
SMA ; ???
JMP GET1 ; It might be a lower case letter

; The character is not lower case -- check for a TAB, ; or !...
TAD ["A"+40-CHTAB] ; Is this a tab character ??
SNA ; ???
TAD [" "-CHTAB] ; Yes -- convert it to a space
TAD [CHTAB-"!"] ; No -- Is it a ! character ??
SNA ; ???
TAD [-"!"] ; Yes -- Convert it to a null
TAD ["!"-073] ; Last chance -- is it a ; ??
SNA ; ???
TAD [-073] ; Yes -- convert that to zero too
TAD [073] ; No -- restore the original character
JMP GET2 ; Then store the character and return

; Here if the character might be lower case...
GET1: TAD ["A"-"Z"] ; Compare to the other end of the range

SPA SNA ; ???
Page 19

BTS6120_Listing
TAD [-40] ; It's lower case -- convert to upper
TAD ["Z"+40] ; Restore the correct character

; Store the character and return...
GET2: DCA SAVCHR ; Remember this character

TAD SAVCHR ; And also return it in the AC
.POPJ ; And that's it

� .TITLE Simple Lexical Functions

; This routine will skip over any spaces in the command line and return the
; next non-space character in the AC and SAVCHR...

; Here to start skipping with the next character...
SPACMP: .PUSHJ @ZGET ; Get the next character

; Here to consider the current character and then skip...
SPACM0: CLA ; Be sure the AC is safe to use

TAD SAVCHR ; And look at the current character
TAD ZMSPACE ; Compare it to a space
SNA CLA ; ???
JMP SPACMP ; Keep going until we don't find one
TAD SAVCHR ; Restore the character
.POPJ ; And we're all done

; This routine will examine the current character (in SAVCHR) or the next
; character (via GET) for end of line, which is stored as a null byte). If
; it isn't the EOL, then COMERR is called and the current command is aborted,
; otherwise this routine just returns...

; Enter here to examine the next character...
EOLNXT: .PUSHJ @ZGET ; Load the next character

; Then fall into the current character test

; Enter here to examine the current character...
EOLTST: .PUSHJ @ZSPACM0 ; Allow blanks at the end of the line

SZA CLA ; Is it the end of the line ??
JMP @ZCOMERR ; No -- that's bad
.POPJ ; Yes -- that's good

; This routine will test either the current character (via SAVCHR) or the
; next character (via GET) to see if it's a space. If it isn't, then it
; jumps to COMERR and aborts the current command...

; Enter here to examine the next character...
SPANXT: .PUSHJ @ZGET ; get the next character

; and fall into SPATST...

; Enter here to examine the current character
SPATST: CLA ; don't require that the AC be cleared

TAD SAVCHR ; get the current character
TAD ZMSPACE ; and compare it to a space
SZA CLA ; well??
JMP @ZCOMERR ; not equal - this is a bad command line
.POPJ ; it's a space

; This routine will backup the command scanner so that the character
; just read will be read again with the next call to GET...
BACKUP: STA ; Load the AC with -1

TAD L ; Then decrement the line pointer
DCA L ; ...
.POPJ ; That's all it takes

.PAGE
� .TITLE Call Routines in Field 1

; This routine will allow a routine in field zero to simulate a .PUSHJ
; to a routine in field one. Even better, when the routine in field one
; executes a .POPJ, the return will eventually be to field zero! The
; contents of the AC are preserved both ways across the call.
;

Page 20

BTS6120_Listing
;CALL:
; JMS @ZPUSHJ1 ; cross field call
; <addr> ; address of a routine in field 1
; <return here> ; with the AC preserved across the call
;
PUSHJ1: 0 ; call here with a JMS instruction

DCA PUSHAC ; save the caller's AC for a minute
TAD @PUSHJ1 ; then get caller's argument
DCA F1ADDR ; that's the address of the routine to call
TAD PUSHJ1 ; now get caller's return address
IAC ; and skip over the argument
.PUSH ; put that on the stack
CLA ; (PUSH doesn't clear the AC!)
TAD [POPJ1] ; the field one routine will return to
.PUSH ; ... POPJ1: in field one
CLA ; ...
TAD PUSHAC ; restore the original AC contents
CXF 1 ; call with IF = DF = 1
JMP @.+1 ; and go to the code in field 1

F1ADDR: .BLOCK 1 ; gets the address of the field 1 routine
PUSHAC: .BLOCK 1 ; a temporary place to save the AC

; When the routine in field one executes a .POPJ, it will actually return to
; the code at POPJ1: _in field one_ !! Since we've also stacked our original
; caller's return address, the code at POPJ1 really only needs to do two
; things, a "CXF 0" to return to field zero, and then another .POPJ.
; Unfortunately, this code has to live in field one, so you won't find it
; here!
� .TITLE RP Command -- Repeat

; This command allows the rest of the command line to be repeated, and it
; accepts an optional argument which specifes the number of times to repeat,
; in decimal. The range for this argument is 1 to 2047 and if it is omitted,
; it defaults to 2047. Note that repeat commands may not be nested; a repeat
; command will cancel any previous repeat on the same command line. Any error
; or a control-C will terminate the repetition prematurely.
REPEAT: .PUSHJ @ZSPACMP ; Get the next character

SNA CLA ; Is it the end of the command ??
JMP REPEA1 ; Yes -- use the default count
.PUSHJ @ZBACKUP ; No -- backup the scanner
.PUSHJ @[DECNW] ; Then read a decimal number
.PUSHJ @ZEOLTST ; Then test for the end of the line

; Set up the repeat counter...
STA ; Subtract one from the user's
TAD WORD ; argument...
SKP ; ...

REPEA1: NL3777 ; If there's no argument, use 2047
DCA REPCNT ; Set the repeat counter

; Set up the repeat pointer...
TAD L ; Get the current line pointer
DCA REPLOC ; Remember where to start from
TAD @REPLOC ; Then examine the current character
SNA CLA ; Is the repeat the last command on the line ??
DCA REPCNT ; Yes -- this is all pointless after all
.POPJ ; Then proceed with the next command

� .TITLE TW and TP Commands - Set Terminal Width and Page

; The TW command sets the terminal screen width to the value of its argument,
; which is a _decimal_ number. Screen widths are limited to the range 32..255.
TWCOM: .PUSHJ @[DECNW] ; read a decimal operand again

.PUSHJ @ZEOLTST ; then check for the end of the line
TAD WORD ; get the desired width
SNA ; is it zero ??
JMP TWCOM1 ; yes -- that disables automatic returns
TAD [-32.] ; compare it to 32
SPA ; is it at least 32 ??
JMP TFILV ; no -- ?ILLEGAL VALUE
TAD [32.-255.] ; now compare it to 255

Page 21

mailto:@.+1

BTS6120_Listing
SMA SZA ; it can't be bigger than that
JMP TFILV ; but it is...
TAD [255.] ; restore the original number

TWCOM1: DCA WIDTH ; and set the terminal width
.POPJ ; then that's all

; Here if the parameter value is illegal...
TFILV: JMS @ZERROR ; yes -- it isn't legal

ERRILV ; ?ILLEGAL VALUE

; The TP command sets the terminal page size to the value of its argument,
; in _decimal_. Page sizes may range from 12 to 48, or zero. A value of zero
; disables the automatic XOFF function completely.
TPCOM: .PUSHJ @[DECNW] ; Read a decimal operand

.PUSHJ @ZEOLTST ; And check for the end of the line
TAD WORD ; Get the value he gave
SNA ; Is it zero ??
JMP TPCOM1 ; Yes -- that is legal (to disable)
TAD [-12.] ; Compare it to 12 lines
SPA ; We have to have at least that many
JMP TFILV ; No -- ?ILLEGAL VALUE
TAD [16.-48.] ; Then compare it to 48
SMA SZA ; Is it more than that ??
JMP TFILV ; Yes -- that won't work, either
TAD [48.] ; Restore the original number

TPCOM1: DCA LENGTH ; And set the new terminal length
.POPJ ; ...

� .TITLE VE Command - Show System Name and Version

; This routine will type the name and version of the monitor. It is called
; at startup, and by the VE command.
VECOM: .PUSHJ @ZEOLNXT ; enter here for the VE command
HELLO: JMS @ZINLMES ; type out the name of the system

SYSNM1 ; ...
TAD [VERSION] ; get the present edit level
.PUSHJ @[TOCT3] ; type that in octal
JMS @ZINLMES ; say
SYSNM2 ; "Checksum "
TAD @[ROMCK0] ; get the checksum of ROM field 0
.PUSHJ @ZTOCT4S ; type that and a space
CDF 1 ; then do the same for ROM field 1
TAD @[ROMCK1] ; ...
CDF 0 ; ...
.PUSHJ @ZTOCT4S ; this time end with a CRLF
JMS @ZINLMES ; finally, type the system date
SYSNM3 ; ...
.PUSHJ @ZCRLF ; finish that line
JMS @ZINLMES ; then type the copyright notice
SYSCRN ; ...
JMP @ZCRLF ; finish that line and we're done

� .TITLE H Command - Show Monitor Help

; The H command generates a simple list of all monitor commands and a
; brief, one line, help message for each. The whole function is driven
; by a table of help messages stored in field one - this table contains
; a list of pointers and each pointer points to the packed ASCII text of
; a single line of help. We simply print each line and add a CRLF at the
; end. It's done this way (as a table of lines) rather than as a single,
; huge, string with embedded CRLFs because the automatic XOFF (i.e. terminal
; page) processing is done via the CRLF routine. Embedded CRLFs wouldn't
; automatically XOFF, and so most of the text would scroll right off the
; top of the CRT.
HELP: .PUSHJ @ZEOLTST ; no arguments are allowed

TAD [HLPLST-1] ; point to the list of help messages
DCA X3 ; in an auto index register

HELP1: CDF 1 ; the help text and table lives in field 1
TAD @X3 ; get the next help message
CDF 0 ; back to our field
SNA ; end of list?
.POPJ ; yes - we can quit now
.PUSHJ @[OUTSTR] ; nope - type this string

Page 22

BTS6120_Listing
.PUSHJ @ZCRLF ; and finish the line
JMP HELP1 ; keep typing until we run out of strings

.PAGE
� .TITLE E and EP Commands -- Examine Main Memory or Panel Memory

; The E command allows the user to examine the contents of memory in octal,
; either one word at a time or an entire range of addresses. In the latter
; case a memory dump is printed with eight PDP-8 words per line. It accepts
; several forms of operands, for example:
;
; >E 1234 -> Examine location 1234 in the data field
; >E 01234 -> Examime location 1234 of field zero
; >E 41234 -> Examine location 1234, field 4
; >E 71000-2000 -> Examine locations 1000 through 2000, field 7
; >E 50000-77777 -> Examine location 0, field 5 thru 7777, field 7
;
; The EP command is identical to E, except that panel memory is examined
; rather than main memory.

; Enter here for the EP command...
EPMEM: STA ; set the PNLMEM flag

SKP ; fall into the regular code
; Enter here for the E command...
EMEM: CLA ; clear the PNLMEM flag

DCA PNLMEM ; to reference main memory

; Both forms join up here...
EMEM0: .PUSHJ @ZRANGE ; go read an address range

SNL ; was there just one address ???
JMP EONE ; yes -- just examine one location

; Fix up the address range for multiple word examines...
TAD LOW ; get the low boundry
AND [7770] ; round it down to a multiple of 8
DCA ADDR ; then it becomes the starting address
TAD HIGH ; get the ending address
AND [7770] ; round it up to a multiple of 8
TAD ZK7 ; ...
DCA HIGH ; and remember the last address to process

; Type out lines of 8 memory locations...
EMEM1: .PUSHJ @[TADDR] ; type out the address of the next word
EMEM2: .PUSHJ @ZRDMEM ; go read a word from main memory

.PUSHJ @ZTOCT4S ; type the word in octal

.PUSHJ @ZTSTADR ; have we done all the locations ??
SZL ; are we there yet ???
JMP EMEM3 ; yes -- finish the line and return
.PUSHJ @ZNXTADR ; no -- increment to the next address
TAD ADDR ; get the current address
AND ZK7 ; is it a multiple of 8 ??
SZA CLA ; ???
JMP EMEM2 ; no -- keep typing
.PUSHJ @ZCRLF ; yes -- start on a new line
JMP EMEM1 ; and type the next address

; Here to examine a single memory location...
EONE: .PUSHJ @[TMEM] ; type out the contents of memory

; and fall into the next range

; Here when we've finished examining one range of addresses...
EMEM3: .PUSHJ @ZCRLF ; finish the current line

.PUSHJ @ZBACKUP ; backup the command line pointer

.PUSHJ @ZSPACMP ; ... and get the next character
SNA ; is it the end of the line ??
.POPJ ; yes -- just stop now
TAD [-","] ; no -- check for a comma
SZA CLA ; ????
JMP @ZCOMERR ; this isn't legal
JMP EMEM0 ; yes -- do another operand

Page 23

BTS6120_Listing
; This routine will type the address and contents of the memory location
; indicated by registers ADDR and ADRFLD.
TMEM: .PUSHJ @[TADDR] ; first type the address

.PUSHJ @ZRDMEM ; then load the indicated word
JMP @ZTOCT4S ; type it out and return

� .TITLE D and DP Commands -- Deposit in Main Memory or Panel Memory

; The D command allows the user to deposit one or more words in memory. The
; general format is:
;
; >D 60123 4567 -> Deposit 4567 into location 0123, field 6
; >D 40000 1,2,3,4 -> Deposit 0001 into location 0, field 4, and 0002
; into location 1, field 4, and 0003 into location
; 2, etc...
;
; The DP command is identical to D, except that panel memory is chaged rather
; than main memory. WARNING - there is no protection against changing the
; monitor when using this command, so it's up to the user to make sure the
; changes don't corrupt something important!

; Enter here for the DP command...
DPMEM: STA ; set the PNLMEM flag

SKP ; fall into the regular code
; Enter here for the D command...
DMEM: CLA ; clear the PNLMEM flag

DCA PNLMEM ; to reference main memory

; Both forms join up here...
.PUSHJ @[RDADDR] ; Then read an address
.PUSHJ @[SPATST] ; the next character has to be a space

; Read words of data and deposit them...
DMEM1: .PUSHJ @ZOCTNW ; read an octal operand

TAD WORD ; get the data we found
.PUSHJ @ZDANDV ; write and verify it
.PUSHJ @ZNXTADR ; advance to the next address
.PUSHJ @ZSPACM0 ; get the break character from OCTNW
SNA ; was it the end of the line ??
.POPJ ; yes, we're done...
TAD [-","] ; no - it has to be a comma otherwise
SZA CLA ; ????
JMP @ZCOMERR ; bad command
JMP DMEM1 ; go read and deposit another word

� .TITLE ER and DR Commands - Examine and Deposit in Registers

; The ER command examines either a single register, when the register name
; is given as an argument, or all registers when no argument is given. For
; example:
;
; >ER AC - examine the AC
; >ER PC - examine the PC
; >ER - print all registers
;
EREG: .PUSHJ @ZSPACMP ; get the next non-space character

SNA CLA ; is it the end of line?
JMP @[REGLSC] ; yes - type all registers and return
.PUSHJ @ZBACKUP ; nope - backup the command scanner
.PUSHJ @[NAMENW] ; and go read the register name
.PUSHJ @ZEOLNXT ; now we have to be at the end of line
TAD [ENAMES-1] ; point to the name table
.PUSHJ @[MATCH] ; find it and call a routine to print
JMP @ZCRLF ; finish the line and we're done

; The DR command deposits a value in a register, and both a register name and
; an octal value are required arguments. For example:
;
; >DR AC 7777 - set the AC to 7777
; >DR SR 3345 - set the switch register to 3345
;
DREG: .PUSHJ @[NAMENW] ; get the register name

Page 24

BTS6120_Listing
.PUSHJ @[SPANXT] ; the terminator has to be a space
.PUSHJ @ZOCTNW ; read an octal number to deposit
.PUSHJ @ZEOLTST ; followed by the end of the line
TAD [DNAMES-1] ; point to the list of deposit names
JMP @[MATCH] ; call the right routine and we're done

.PAGE
� .TITLE Deposit in Registers

; Here to deposit in the AC...
DAC: TAD WORD ; Get his value

DCA UAC ; And change the AC
.POPJ ; Then that's all

; Here to deposit in the PC...
DPC: TAD WORD ; The same old routine...

DCA UPC ; ...
.POPJ ; ...

; Here to deposit in the MQ...
DMQ: TAD WORD ; ...

DCA UMQ ; ...
.POPJ ; ...

; Here to deposit in the PS...
DPS: TAD WORD ; ...

AND [6277] ; only these bits can actually change
MQL ; save the new value for a minute
TAD UFLAGS ; get the current status
AND [1500] ; clear the complementary bits
MQA ; or everything together
DCA UFLAGS ; and update the PS
.POPJ ; ...

; Here to deposit in the switch register...
DSR: TAD WORD ; ...

WSR ; Load the switch register
.POPJ ; Then that's all

� .TITLE Examine Registers

; This routine is called to type out all the important internal registers.
; It is used by the ER, and SI commands, and after breakpoints, traps and
; halts.
REGLST: CLA ; be sure the AC is cleared

.PUSHJ TYPEPC ; type the PC first

.PUSHJ TYPEPS ; then the LINK

.PUSHJ TYPEAC ; then the AC

.PUSHJ TYPEMQ ; then the MQ

.PUSHJ TYPSP1 ; user stack pointer 1
JMP TYPSP2 ; and finally stack pointer 2

; The same as REGLST, but with a carriage return added...
REGLSC: .PUSHJ REGLST ; first type the registers

JMP @ZCRLF ; type the carriage return and we're done

; This routine types a register name followed by an octal register value.
; The latter is passed in the AC, and the register name is passed inline.
TYPRG4: 0 ; enter here with a JMS instruction

DCA VALUE ; save the register contents for a moment
TAD @TYPRG4 ; and get the address of the register name
.PUSHJ @[OUTSTR] ; type that
TAD VALUE ; get the contents of the register
JMP @ZTOCT4S ; type that in octal and leave a blank

; This routine will type the last user AC contents...
TYPEAC: TAD UAC ; get the contents of the register

JMS TYPRG4 ; type it and return
ACNAME ; "AC>"

Page 25

BTS6120_Listing
; This routine will type the last user PC...
TYPEPC: TAD UPC ; the same old routine...

JMS TYPRG4 ; ...
PCNAME ; "PC>"

; This routine will type the last user MQ contents...
TYPEMQ: TAD UMQ ; ...

JMS TYPRG4 ; ...
MQNAME ; "MQ>"

; This routine will type the last instruction executed...
TYPEIR: TAD UIR ; ...

JMS TYPRG4 ; ...
IRNAME ; "IR>"

; This routine will type the current interrupt flags...
TYPEPS: TAD UFLAGS ; get the flags

JMS TYPRG4 ; ...
PSNAME ; "PS>"

; This routine will type the 6120 stack pointer #1...
TYPSP1: TAD USP1 ; ...

JMS TYPRG4 ; ...
SP1NAM ; "SP1>"

; This routine will type the 6120 stack pointer #2...
TYPSP2: TAD USP2 ; ...

JMS TYPRG4 ; ...
SP2NAM ; "SP2>"

; This routine will type the current switch register contents...
TYPESR: LAS ; actually read the switch register

JMS TYPRG4 ; ...
SRNAME ; "SR>"

� .TITLE Read and Write Memory

; This routine will change the current data field to the field indicated in
; location ADRFLD. It's normally used by commands that read or write memory,
; such as Examine, Deposit, etc. Remember that on the 6120 the EMA works in
; panel memory as well, so don't forget to change back to field zero after
; you're done!
CFIELD: CLA ; ...

TAD ADRFLD ; get the desired field number
AND ZK70 ; just in case!
TAD [CDF 0] ; and make a CDF instruction
DCA .+1 ; store that in memory
0 ; isn't self manipulation wonderful?
.POPJ ; that's all

; This routine will set or clear the panel data flag according to the state
; of the PNLMEM flag. If PNLMEM is non-zero, the panel data flag is set and
; commands that access memory (e.g. Examine, Deposit, etc) access panel memory
; instead. If PNLMEM is zero, then the panel data flag is cleared and these
; commands access main memory.
CPANEL: CLA ; don't expect anything from the caller

SPD ; assume we're referencing panel memory
TAD PNLMEM ; but get the flag to be sure
SNA CLA ; non-zero means access panel memory
CPD ; we were wrong - use main memory instead
.POPJ ; and we're done

; This short routine returns, in the AC and memory location VALUE, the
; contents of the memory location addressed by ADDR and ADRFLD. If PNLMEM is
; non-zero it reads panel memory to get the data; otherwise it reads main
; memory...
RDMEM: .PUSHJ CFIELD ; first select the proper field

.PUSHJ CPANEL ; then select main memory or panel memory
TAD @ADDR ; load the data
DCA VALUE ; save the contents in VALUE
TAD VALUE ; and also return it in the AC
SPD ; back to panel memory

Page 26

BTS6120_Listing
CDF 0 ; and back to the monitor's field
.POPJ ; that's all there is

; This routine will deposit the contents of the AC into the memory location
; specified by ADRFLD, ADDR and PNLMEM. It's the complement of RDMEM...
WRMEM: DCA VALUE ; save the number to deposit

.PUSHJ CFIELD ; be sure we're in the right field

.PUSHJ CPANEL ; and the right memory space (panel vs main)
TAD VALUE ; get the value back again
DCA @ADDR ; store the data
SPD ; back to panel memory
CDF 0 ; and the monitor's data field
.POPJ ; and return

; This routine is just like WRMEM, except that it will read back the value
; deposited and verify that it is, in fact, correct! If it isn't (i.e. there's
; no memory at that address or the memory there isn't working) a ?MEM ERR
; message is generated and this command is aborted.
DANDV: DCA GOOD ; save the original, good, value

TAD GOOD ; ...
.PUSHJ WRMEM ; store it
.PUSHJ RDMEM ; read it back
CIA ; make what we read negative
TAD GOOD ; and compare it to the desired value
SNA CLA ; did they match ??
.POPJ ; yes -- this memory is ok

; Type a "?MEM ERR AT faaaa ..." message
JMS @ZINLMES ; type out the first part of the message
MEMMSG ; ...
.PUSHJ @[TADDR] ; then type the address of the error
TAD GOOD ; get the expected value
.PUSHJ @ZTOCT4S ; type that out first
.PUSHJ @ZRDMEM ; read what we actually get from memory
.PUSHJ @ZTOCT4C ; then type that with a CRLF
JMP @ZRESTA ; and bomb this command

; Temporary storage for DANDV...
GOOD: .BLOCK 1 ; the "good" value we wrote to memory

.PAGE
� .TITLE BM Command -- Memory Block Move

; The BM command is used to move blocks of memory words from one location to
; another. It has three parameters - the source address range (two 15 bit
; numbers), and the destination address (a single 15 bit number). All words
; from the starting source address to the ending source address are transferred
; to the corresponding words starting at the destination address. More than
; one field may be transferred, and transfers may cross a field boundry.
;
; >BM 200-377 400 -> move all of page 1 in the current data field
; to page 2 of the same field.
; >BM 0-7777 10000 -> move all of field 0 to field 1
; >BM 00000-37777 40000 -> move fields 0 thru 3 to fields 4 thru 7
;
; Note that this command operates only on main memory - there is no
; corresponding block move command for panel memory!
;
BMOVE: .PUSHJ @ZRANGE ; read the source address range

SNL ; did he give 2 numbers ???
JMP @ZCOMERR ; no -- don't allow a one address range
.PUSHJ @[RDADDR] ; now read the destination
.PUSHJ @ZEOLTST ; this should be the end of the command
DCA PNLMEM ; this command ALWAYS operates on main memory

; Now copy words from the source to the destination...
MOVE1: .PUSHJ @[SWPADR] ; swap the LOW/LOWFLD (the source address)

.PUSHJ @ZRDMEM ; read a word from the source

.PUSHJ @ZTSTADR ; go see if this is the last address
SZL CLA ; is it the end ???
STA ; yes -- load -1 into the AC
DCA COUNT ; and remember that fact for later

Page 27

BTS6120_Listing
.PUSHJ @ZNXTADR ; now increment the source address
.PUSHJ @[SWPADR] ; swap the source back into LOW/LOWFLD
TAD VALUE ; get the data we read from the source
.PUSHJ @ZDANDV ; and deposit it in the destination
.PUSHJ @ZNXTADR ; increment the destination address too
SZL ; did we wrap out of field 7 ???
JMP MOVE2 ; yes -- stop here
ISZ COUNT ; have we copied all the words ??
JMP MOVE1 ; no -- keep looping
.POPJ ; yes -- that's all

; Here if the destination address runs out of field 7...
MOVE2: JMS @ZERROR ; don't allow that to continue

ERRWRP ; ?WRAP AROUND
� .TITLE CK Command -- Checksum Memory

; This command will compute the checksum of all memory locations between the
; two addresses specified and the resulting 12 bit value is then printed
; on the terminal. This is useful for testing memory, comparing blocks of
; memory, and so on. Note that the checksum algorithm used rotates the
; accumulator one bit between each words, so blocks of memory with identical
; contents in different orders will give different results.
;
; >CK 10000-10177 -> checksum all of page 0, field 1
;
; Note that this command operates only on main memory - there is no
; corresponding command for panel memory!
CKMEM: .PUSHJ @ZRANGE ; read a two address range

SNL ; two addresses are required
JMP @ZCOMERR ; ...
.PUSHJ @ZEOLTST ; be sure this is the end of the command
DCA PNLMEM ; this command ALWAYS operates on main memory
DCA CHKSUM ; and clear the checksum accumulator

; Read words and checksum them...
CKMEM1: TAD CHKSUM ; get the previous total

CLL RAL ; and shift it left one bit
SZL ; did we shift out a one ??
IAC ; yes -- shift it in the right end
DCA CHKSUM ; save that for a while
.PUSHJ @ZRDMEM ; and go read a word from real memory
TAD CHKSUM ; add it to the checksum
DCA CHKSUM ; save the new checksum
.PUSHJ @ZTSTADR ; compare the addresses next
SZL ; are we all done ??
JMP TCKSUN ; yes -- type the checksum and return
.PUSHJ @ZNXTADR ; no -- increment the address
JMP CKMEM1 ; and proceed

; This routine will type out the checksum currently contained in location
; CHKSUM. If the checksum isn't zero, it will type a question mark (making
; a pseudo error message) first...
TCKSUM: TAD CHKSUM ; see if the checksum is zero

SNA CLA ; ???
JMP TCKSUN ; yes -- type it normally
.PUSHJ @[TQUEST] ; no -- type a question mark first

; Now type the checksum...
TCKSUN: JMS @ZINLMES ; type out the checksum message

CKSMSG ; ...
TAD CHKSUM ; get the actual checksum
JMP @ZTOCT4C ; type it with a CRLF and return

� .TITLE CM and FM Commands -- Clear Memory and Fill Memory

; The FM command fills a range of memory locations with a constant. For
; example:
;
; >FM 7402 0-7777 -> fill all of field zero with HLT instructions
; >FM 7777 0-77777 -> fill all of memory with -1
;

Page 28

BTS6120_Listing
; The second and third arguments (the address range) may be omitted, in
; which case all of memory is filled.
;
; Note that this command operates only on main memory - there is no
; corresponding command for panel memory!
FLMEM: .PUSHJ @ZOCTNW ; read the constant to fill with

TAD WORD ; get the desired value
JMP CMEM0 ; then join the CM command

; The CM command is identical to FM, except that the fill value is always
; zero (hence the name - "Clear" memory). For example:
;
; >CM 50000 57777 -> clear all of field 5
; >CM -> (with no arguments) clear all of memory!
;
; Like FM, this command operates only on main memory. There is no
; equivalent for panel memory.
CMEM: .PUSHJ @ZGET ; advance the scanner to the break character

CLA ; and throw it away for now
CMEM0: DCA VALUE ; and fill with zeros

DCA ADDR ; initialize the address range to start
DCA ADRFLD ; at location 0000, field 0
STA ; and to finish at location 7777,
DCA HIGH ; ...
TAD ZK70 ; field 7
DCA HGHFLD ; ...
DCA PNLMEM ; this command ALWAYS operates on main memory

; See if there is an address range...
.PUSHJ @ZSPACM0 ; get the break character
SNA CLA ; is there any more out there ??
JMP CMEM1 ; no -- start filling
.PUSHJ @ZBACKUP ; yes - backup to the first character
.PUSHJ @ZRANGE ; and read the address range
.PUSHJ @ZEOLTST ; then check for the end of the line

; Clear/set memory locations...
CMEM1: TAD VALUE ; get the value to store

.PUSHJ @ZDANDV ; store it and verify

.PUSHJ @ZTSTADR ; see if we have done all the addresses
SZL ; well ??
.POPJ ; yes -- we can stop now
.PUSHJ @ZNXTADR ; no -- increment the address field
JMP CMEM1 ; then go clear this word

.PAGE
� .TITLE WS Command -- Word Search Memory

; The WS command searches memory for a specific bit pattern. It accepts up
; to 4 operands: (1) the value to search for, (2) the starting search address,
; (3) the final search address, and (4) a search mask. All values except the
; first are optional and have appropriate defaults. Any location in the
; specified range which matches the given value after being masked is typed
; out along with its address. For example:
;
; >WS 6031 -> search all of memory for KSF instructions
; >WS 6031 30000-33777 -> search words 0..3377 of field 3 for KSFs
; >WS 6030 0-77777 7770 -> search memory for any keyboard IOTs
;
; N.B. this command operates only on main memory and there is no equivalent
; for panel memory.

; Read the first (required) operand and set defaults for all the rest...
SEARCH: .PUSHJ @ZOCTNW ; read the value to search for

TAD WORD ; then get that
DCA KEY ; and save it
DCA ADDR ; set the starting address to 0
DCA ADRFLD ; in field 0
STA ; then stop at location 7777
DCA HIGH ; ...
TAD ZK70 ; field 7

Page 29

BTS6120_Listing
DCA HGHFLD ; ...
STA ; and set the mask to 7777
DCA MASK ; ...
DCA PNLMEM ; this command _always_ searches main memory

; Try to read any optional operands...
TAD SAVCHR ; is there any more there ??
SNA CLA ; ???
JMP SEAR1 ; no -- start looking
.PUSHJ @ZRANGE ; yes -- read the address range
TAD SAVCHR ; is there a mask out there ??
SNA CLA ; ???
JMP SEAR1 ; no -- start looking
.PUSHJ @ZOCTNW ; yes -- read the mask too
TAD WORD ; load the mask
DCA MASK ; and save that for later
.PUSHJ @ZEOLTST ; this has to be the end of the line

; Here to start the search...
SEAR1: DCA COUNT ; count the number of matches we find

TAD KEY ; get the search key
AND MASK ; apply the mask to it too
CIA ; make it negative
DCA KEY ; and remember that instead

; Look through memory for matches...
SEAR2: .PUSHJ @[INCHRS] ; poll the operator for control-C

.PUSHJ @ZRDMEM ; read a word from real memory
AND MASK ; apply the mask to it
TAD KEY ; and compare to the value
SZA CLA ; does it match ??
JMP SEAR3 ; no -- skip it
.PUSHJ @[TMEM] ; yes -- type the address and contents
.PUSHJ @ZCRLF ; then finish the line
STA ; make the AC non-zero
DCA COUNT ; and remember that we found a match

SEAR3: .PUSHJ @ZTSTADR ; see if we have looked everywhere
SZL ; well ??
JMP SEAR4 ; yes -- finish up now
.PUSHJ @ZNXTADR ; no -- increment the address
JMP SEAR2 ; and keep looking

; Here at the end of the search...
SEAR4: TAD COUNT ; see how many matches there were

SZA CLA ; were there any at all ??
.POPJ ; yes -- that's fine
JMS @ZERROR ; no -- give an error message
ERRSRF ; ? SEARCH FAILS

; Temporary storage for the SEARCH routine...
KEY: .BLOCK 1 ; a search key
MASK: .BLOCK 1 ; a search mask

� .TITLE BL Command -- List Breakpoints

; This command will list all the breakpoints which are currently set in
; the user's program. It has no operands...
;
; >BL
;
BLIST: .PUSHJ @ZEOLNXT ; there should be no more

.PUSHJ BSETUP ; set up X1, X2 and COUNT
DCA VALUE ; count the number of breakpoints here

; Loop through the breakpoint table and list all valid breakpoints...
BLIST1: TAD @X1 ; get the address of this breakpoint

DCA ADDR ; and remember that
TAD @X2 ; then get the corresponding field
DCA ADRFLD ; ...
TAD ADDR ; let's see that address again
SNA CLA ; is there really a breakpoint set here ??

Page 30

BTS6120_Listing
JMP BLIST2 ; no -- on to the next one
.PUSHJ @[TMEM] ; yes -- type out the address and memory
.PUSHJ @ZCRLF ; finish this line
ISZ VALUE ; and count the number we find

BLIST2: ISZ COUNT ; are there more breakpoints to do?
JMP BLIST1 ; yes - keep going

; Here after going through the table...
TAD VALUE ; see how many we found
SZA CLA ; any at all ??
.POPJ ; yes -- that's great
JMS @ZERROR ; no -- print an error message
ERRNBP ; ?NONE SET

; This routine will set up the pointers for traversing the break point
; table. X1 always points to the break point address table, X2 points to
; the break point field table, and X3 points to the break point data table.
; COUNT is initialized to the negative of the table size (all three tables
; are the same size) so that it can be used as an ISZ counter. This same
; arrangement of pointers is used by all the routines that operate on
; breakpoints.
BSETUP: CLA ; just in case...

TAD [BPTADR-1] ; X1 points to the address table
DCA X1 ; ...
TAD [BPTFLD-1] ; X2 points to the field table
DCA X2 ; ...
TAD [BPTDAT-1] ; X3 points to the data table
DCA X3 ; ...
TAD [-MAXBPT] ; and COUNT is the table size
DCA COUNT ; ...
DCA PNLMEM ; break points always refer to main memory!
.POPJ ; ...

� .TITLE Search for Breakpoints

; This routine will search the breakpoint table to see if there is a one set
; at the location specified by ADDR and ADRFLD. If one is found, it will
; return with the LINK set and with X1/X2 pointing to the table entry. If
; there is no breakpoint at the specified address, it returns with the LINK
; cleared.
BPTFND: .PUSHJ BSETUP ; set up X1, X2 and COUNT

; Look through the entire table...
BPTFN1: TAD @X1 ; get this breakpoint address

SNA ; is there breakpoint here at all ??
JMP BPTFN2 ; no -- just forget it
CIA ; make this address negative
TAD ADDR ; and compare to what we want
SZA CLA ; does it match ??
JMP BPTFN2 ; no -- on to the next one
TAD @X2 ; yes -- get the field number
CIA ; make that negative
TAD ADRFLD ; and compare to the field we need
SZA CLA ; do they match to ??
JMP BPTFN3 ; no -- keep looking
STL ; yes -- set the LINK
.POPJ ; and stop right now

; Here if the current address dosen't match...
BPTFN2: ISZ X2 ; increment the field pointer too
BPTFN3: ISZ COUNT ; have we searched the entire table?

JMP BPTFN1 ; no -- keep looking
CLL ; yes -- clear the LINK
.POPJ ; and return

.PAGE
� .TITLE BR Command -- Remove Breakpoints

; The BR command removes a breakpoint at a specific address or, if no
; operand is given, removes all breakpoints. For example:
;

Page 31

BTS6120_Listing
; >BR 17605 -> remove the breakpoint at location 7605, field 1
; >BR -> remove all breakpoints regardless of address
;
BREMOV: .PUSHJ @ZGET ; get the next character

SNA CLA ; is it the end of the line ??
JMP BPTCLR ; yes -- clear all breakpoints
.PUSHJ @ZBACKUP ; no -- backup the scanner
.PUSHJ @[OCTNI] ; then read an address
TAD WORD ; get the breakpoint address
SNA ; be sure it isn't location zero
JMP @ZCOMERR ; that isn't legal
DCA ADDR ; save the address of the breakpoint

; Here to remove a single breakpoint...
.PUSHJ @[BPTFND] ; look for this breakpoint it the table
SNL ; did we find it ??
JMP BREMO1 ; no -- there's no breakpoint at that address
TAD X1 ; yes -- get the pointer to BPTADR
DCA ADDR ; and save it in a non-autoindex location
DCA @ADDR ; clear the BPTADR entry (to remove it)
.POPJ ; and that's all

; Here if the breakpoint does not exist...
BREMO1: JMS @ZERROR ; give an appropriate error message

ERRNST ; ?NOT SET

; Here to clear all breakpoints...
BPTCLR: .PUSHJ @[BSETUP] ; setup X1, X2, X3 and COUNT
BPTCL2: DCA @X1 ; clear this breakpoint

DCA @X2 ; ...
DCA @X3 ; ...
ISZ COUNT ; have we done them all?
JMP BPTCL2 ; no -- keep looping
.POPJ ; yes -- that's it

� .TITLE BP Command -- Set Breakpoints

; The BP command sets a breakpoint in the main memory (aka user) program.
; It requires a single argument giving the 15 bit address where the breakpoint
; is to be set. For example:
;
; >BP 07605 -> set a breakpoint at location 7605, field 0
; >BP 7605 -> same, but in the current instruction field
;
; It's not possible to set a breakpoint at location zero in any field because
; the monitor uses zero as a marker for an unused breakpoint table entry.
;
; Note that this routine only enters the breakpoint into the table - nothing
; actually happens to the main memory program until we start running it and
; the BPTINS routine is called.
BPTCOM: .PUSHJ @[OCTNI] ; go read the address

TAD WORD ; get the address operand
SNA ; be sure it isn't zero
JMP @ZCOMERR ; no breakpoints at address zero
DCA ADDR ; and put it in a safe place
.PUSHJ @ZEOLTST ; then test for the end of the line

; See if this breakpoint is already in the table..
.PUSHJ @[BPTFND] ; ...
SNL CLA ; was it found ??
JMP BPTCO1 ; no -- go try to add it
JMS @ZERROR ; yes -- say that it is already set
ERRAST ; ?ALREADY SET

; Here to search for a free location in the table...
BPTCO1: .PUSHJ @[BSETUP] ; setup X1 and COUNT
BPTCO2: ISZ X2 ; keep X1 and X2 in sync

TAD @X1 ; get this table entry
SNA CLA ; have we found an empty one ??
JMP BPTCO3 ; yes -- great
ISZ COUNT ; have we searched the entire table?
JMP BPTCO2 ; no -- keep trying

Page 32

BTS6120_Listing
JMS @ZERROR ; yes -- say that the table is full
ERRBTF ; ?TABLE FULL

; Here to insert the breakpoint in the table...
BPTCO3: TAD X1 ; get the pointer to the free location

DCA LOW ; and put it in a non-autoindex location
TAD ADDR ; get the desired address
DCA @LOW ; and store that in the table
TAD X2 ; do the same with the field table
DCA LOW ; ...
TAD ADRFLD ; get the field we need
DCA @LOW ; and put that in the table
.POPJ ; then that's all

� .TITLE Insert Breakpoints in Memory

; This routine will insert breakpoints in main memory (aka the user program)
; at the locations specified in the breakpoint table. The current contents of
; each breakpoint location are stored in CP memory in the BPTDAT table, and
; then are replaced by a BPT instruction. This routine is normally called
; just before returning control to the user's program.
BPTINS: .PUSHJ @[BSETUP] ; set up X1, X2, X3 and COUNT

; Loop through the table and insert the breakpoints...
BPTIN1: TAD @X1 ; get the next address

SNA ; is there a breakpoint set there ??
JMP BPTIN2 ; no -- proceed to the next one
DCA ADDR ; yes -- save the address
TAD @X2 ; and get the field
DCA ADRFLD ; save that too
.PUSHJ @ZRDMEM ; go read the contents of that location
DCA @X3 ; save the user's data in the table
TAD [BPT] ; then get a breakpoint instruction
.PUSHJ @ZDANDV ; deposit that in the breakpoint location
JMP BPTIN3 ; proceed to the next one

; See if we have finished the table...
BPTIN2: ISZ X2 ; keep the pointers in sync

ISZ X3 ; ...
BPTIN3: ISZ COUNT ; have we been all the way through ??

JMP BPTIN1 ; no -- keep going
.POPJ ; yes -- quit now

� .TITLE Remove Breakpoints from Memory

; This routine will restore the original contents of all breakpoint locations
; in the main memory program from the table at BPTDAT. It is normally called
; after a trap to CP memory occurs. Breakpoints must be restored so that the
; user may examine or change them.
BPTRMV: .PUSHJ @[BSETUP] ; set up X1, X2, X3 and COUNT

; Loop through the breakpoint table and restore all data...
BPTRM1: TAD @X1 ; get the address of this breakpoint

SNA ; is there one there at all ??
JMP BPTRM2 ; no -- on to the next one
DCA ADDR ; yes -- remember the address
TAD @X2 ; then get the correct field too
DCA ADRFLD ; ...
TAD @X3 ; finally get the original contents
.PUSHJ @ZDANDV ; deposit and verify it back where it goes
JMP BPTRM3 ; on to the next one

; Here to advance to the next breakpoint...
BPTRM2: ISZ X2 ; keep the pointers in sync

ISZ X3 ; ...
BPTRM3: ISZ COUNT ; have we done them all ??

JMP BPTRM1 ; no -- keep looping
.POPJ ; yes -- that's it for this time

� .TITLE TR Command -- Single Instruction with Trace

; The TR command will execute one instruction of the user's program and then
Page 33

BTS6120_Listing
; print the registers. It always executes one instruction, but it may be
; combined with the repeat (RP) command to execute multiple instructions.
SICOM: .PUSHJ @ZEOLNXT ; there are no operands

; Figure out what we are going to execute...
TAD UFLAGS ; get the instruction field
AND ZK70 ; ...
DCA ADRFLD ; so we can change to that field
TAD UPC ; get the current main memory PC
DCA ADDR ; and point to that
DCA PNLMEM ; always access main memory
.PUSHJ @ZRDMEM ; go read what we're about to execute
DCA UIR ; remember that for later

; Execute 1 instruction...
.PUSHJ @[SINGLE] ; just like it says

; Print all the registers...
.PUSHJ @[TYPEIR] ; first type the UIR
JMP @[REGLSC] ; and then print the rest and return

.PAGE
� .TITLE SI and P Commands - Single Instruction and Proceed

; This routine will execute a single instruction of the user's program and
; then return to the caller. It is used directly to execute the SI command,
; and indirectly by many other commands...

; Here for the SI command...
SNCOM: .PUSHJ @ZEOLNXT ; make sure that there is no more

; Setting the HALT flip flop will cause the HM6120 to immediately trap back
; to panel mode after it has executed exactly one instruction of the main
; memory program. This makes it easy to implement a single step function.
;
; Note that SINGLE is a subroutine which you can actually call, via a
; .PUSHJ, from anywhere in the monitor and it will return after the main
; memory instruction has been executed. This little bit of magic happens
; because the code at CONT1 saves the monitor stack and then restores
; it after the single instruction trap.
SINGLE: PGO ; first make sure the HALT flip flop is cleared

HLT ; then make sure it's set
STA ; set the software single step flag
DCA SIMFLG ; ... so that CPSAVE will know what to do
JMP CONT1 ; then restore the registers and go

; The P command is used to proceed after the main memory program has stopped
; at a breakpoint. You can't simply continue at this point because the PC
; points to the location of the breakpoint, and Continue would simply break
; again, instantly. The Proceed command gets around this problem by first
; executing a single instruction, and then contining normally.
PROCEE: .PUSHJ @ZEOLNXT ; this command has no operands

.PUSHJ SINGLE ; first execute the location under the BPT
JMP CONT ; then restore the breakpoints and continue

� .TITLE C Command - Restore Main Memory Context and Continue

; This routine will restore all the user's registers and return to his
; program. It is called directly for the continue command, and is used
; indirectly (to change contexts) by several other commands.
;
; When this routine finishes in the most literal sense, the user mode
; program is running and the monitor is no longer active. However the
; CONT function can and will actually return, via a POPJ, if the user
; program causes a breakpoint or single instruction trap. This property is
; critical to the operation of the Proceed, TRace and Single Instruction
; commands!

; Here for the continue command...
CONTCM: .PUSHJ @ZEOLNXT ; continue has no operands

Page 34

BTS6120_Listing
; Select free running mode and insert all breakpoints...
CONT: .PUSHJ @[BPTINS] ; insert all breakpoints

DCA SIMFLG ; clear our software single step flag
PGO ; make sure the HALT flip-flop is cleared

; Restore all registers and context switch. Naturally, part of this involves
; restoring the original user mode stack pointers, so before we lose our own
; stack forever, we save a copy of the last monitor stack pointer in RAM. It
; gets restored by the code at CPSAVE after a breakpoint or single instruction
; trap.
;
; Another gotcha - if a transition on CPREQ L occurs while we're in panel
; mode, the BTSTRP flag in the panel status will still set anyway. If that
; happens and we try to continue, the 6120 will trap back to panel mode
; immediately. The simplest fix for this is to do a dummy read of the panel
; status flags, which clears them.
CONT1: PRS ; dummy read of panel status to clear BTSTRP

RSP1 ; get our monitor's stack pointer
DCA STKSAV ; and save it for later
POST+0 ; show post code 0
TAD USP1 ; reload stack pointer #1
LSP1 ; ...
TAD USP2 ; and stack #2
LSP2 ; ...
TAD UMQ ; restore the MQ register
MQL ; ...
TAD UFLAGS ; restore the flags, including IF, DF and LINK
RTF ; ...
TAD UAC ; restore the AC
PEX ; exit panel mode
JMP @UPC ; and, lastly, restore the PC

; At this point we're running the main memory program. If that program
; causes a breakpoint or single instruction trap, then the HM6120 will enter
; the CPSAVE routine thru the vector at 7777. After it figures out the reason
; for the trap, CPSAVE will restore the original monitor's stack, from STKSAV,
; and execute a .POPJ. Only then will this routine "return".
� .TITLE ST Command -- Start a Main Memory Program

; The start command initializes the CPU registers and all I/O devices and
; then transfers control to a main memory (user) program. A single, optional,
; argument may be given to specify the start address of the the main memory
; program. If the start address is omitted, then the default is location
; 7777 of field 0 (this is a little strange by PDP-8 standards, but it's the
; typical reset vector for 6100 and 6120 devices). For example:
;
; >ST 00200 - start at location 200 in field 0 (DF is also 0)
; >ST 70200 - start at location 200 in field 7 (DF is also 7)
; >ST - start at location 7777 of field 0 (DF is also 0)
;
START: .PUSHJ @ZGET ; get the next character

SNA CLA ; is there anything out there ??
JMP START1 ; no -- use the defaults

; Start at a specific (non-default) address...
.PUSHJ @ZBACKUP ; backup to the start of the address
.PUSHJ @[OCTNI] ; then read it
.PUSHJ @ZEOLTST ; now it has to be the end of the line
.PUSHJ CLRCPU ; clear the saved main memory registers
TAD WORD ; and overwrite the PC with the desired address
DCA UPC ; ...
TAD ADRFLD ; get the start field
CLL RTR ; and make the DF be the same
CLL RTL ; ...
TAD ADRFLD ; ...
DCA UFLAGS ; those are the default processor flags
JMP CONT ; insert any breakpoints and then go

; Start at the default address.
START1: .PUSHJ CLRCPU ; set all main saved CPU registers to default

JMP CONT ; and then start there
Page 35

BTS6120_Listing
� .TITLE MR Command - Master Reset

; The MR command executes a CAF instruction to assert IOCLR L and initialize
; all external I/O devices, and then it resets the saved state of the main
; memory program to the "default" values. From the point of view of an I/O
; device on the bus, this is equivalent to pressing the RESET button, but it
; doesn't actually reset the CPU itself (which would re-initialize this
; monitor!). This command doesn't have any effect on the contents of main
; memory.
CLRCOM: .PUSHJ @ZEOLNXT ; There are no operands

; Initialize the saved user context...
.PUSHJ CLRCPU ; clear UAC, UPC, UMQ, etc...

; Execute a CAF instruction to clear all I/O devices. On the IM6100 we
; couldn't do this, since CAF would also clear the CP flag (!), but the 6120
; designers allowed for this case.
;
; Unfortunately IOCLR L also resets the console UART, which plays havoc
; with any character that we might be transmitting at the moment. The only
; safe thing is to wait for the console to finish before executing the CAF.
; Note that this will _leave_ the console flag cleared, which is the way a
; real PDP-8 program should expect it (clearing a real PDP-8 clears the
; console flag too, after all).

TSF ; has the console finished yet?
JMP .-1 ; no - wait for it
CAF ; clear all I/O flags

; Reset the IDE disk too. If none is attached, then this is harmless...
JMS @ZPUSHJ1 ; (cross field call)
IDEINI ; reset the IDE disk and then return
JMS @ZPUSHJ1 ; (cross field call)
INIPMP ; and initialize the partition map
.POPJ ; all done ...

; This routine is called by the START and RESET commands and at system
; initialization to clear the saved user context...
CLRCPU: CLA ; start with all zeros

DCA UAC ; clear the AC
DCA UMQ ; and the MQ
DCA UFLAGS ; the DF, IF and LINK
DCA USP1 ; stack pointer #1
DCA USP2 ; and #2
STA ; then finally set the PC to 7777
DCA UPC ; ...
.POPJ ; ...

� .TITLE EX Command - Execute IOT Instructions

; The EX command allows a user to type in and execute an IOT instruction
; directly from the terminal, which can be very useful for testing peripheral
; devices. Either one or two operands are allowed - the first is the octal
; code of the IOT to be executed, and the second (which is optional) is a
; value to be placed in the AC before the IOT is executed. If it is omitted,
; zero is placed in the AC. After the instruction is executed, the word SKIP
; is typed if the instruction skipped, along with the new contents of the AC.
;
; >EX 6471 -> execute IOT 6741 (the AC will be cleared)
; >EX 6474 1176 -> put 1176 in the AC and execute IOT 6474
;
; WARNING - some care must be exercised with this command, since executing
; the wrong IOT can crash the monitor!
XCTCOM: .PUSHJ @ZOCTNW ; go read the IOT instruction code

TAD WORD ; then get the value
DCA XCTBLK ; save that where we'll execute it
DCA WORD ; assume to use zero in the AC
TAD SAVCHR ; next get the break character
SNA CLA ; was it the end of the line ??
JMP XCT1 ; yes -- default to zero
.PUSHJ @ZOCTNW ; no -- read another number

Page 36

BTS6120_Listing
.PUSHJ @ZEOLTST ; then test for the end of the line

; Be sure the instruction is really an IOT...
XCT1: TAD XCTBLK ; get the instruction

TAD [-6000] ; compare it to 6000
SMA CLA ; is it an IOT or OPR instruction ?
JMP XCT2 ; yes -- that's OK
JMS @ZERROR ; no -- don't allow this
ERRILV ; ?ILLEGAL VALUE

; Execute the instruction...
XCT2: DCA COUNT ; will be non-zero if the IOT doesn't skip

TAD WORD ; get the value we're supposed to put in the AC
XCTBLK: NOP ; gets overwritten with the IOT to execute

ISZ COUNT ; set the flag if it doesn't skip
DCA VALUE ; and remember what is left in the AC

; Print the results of the instruction..
TAD COUNT ; see if it skipped
SZA CLA ; well ??
JMP XCT3 ; no -- no message
JMS @ZINLMES ; yes -- say that it did
SKPMSG ; ...

XCT3: JMS @ZINLMES ; then print the AC after the instruction
ACNAME ; ...
TAD VALUE ; ...
JMP @ZTOCT4C ; in octal, with a CRLF, and return

.PAGE

.TITLE OS/8 Bootstrap

; How to boot OS/8 (there's lots of documentation on how to write a device
; handler, even a system handler, but I couldn't find a description of how
; to make a bootable device anywhere!):
;
; The primary bootstrap for a device (the one which you have to toggle in
; with the switches!) normally loads cylinder 0, head 0, sector 0 (which is
; the equivalent to OS/8 logical block zero) into memory page zero field zero.
; The code loaded into page zero is then started in some device specific way,
; but usually the primary bootstrap is overwritten by this data and the CPU
; just "ends up" there.
;
; The first few words of block zero are called the secondary bootstrap, and
; it's normally found in the header for the system device handler. OS/8 BUILD
; copies this code from the handler to block zero when it builds the system
; device. The second half of block zero contains the system handler, what's
; resident in page 7600 while OS/8 is running, plus some OS/8 resident code
; that BUILD wraps around it. All of the second half of block zero must be
; loaded into page 7600, field 0 by the secondary bootstrap.
;
; The remainder of the first half of block zero, the part after the secondary
; bootstrap, contains the OS/8 resident code for field 1. This starts some
; where around offset 47 in the first half of block zero, and this code needs
; to be loaded into the corresponding locations of page 7600, field 1. The
; remaining words in page 7600, field 1 (i.e. those that belong to the
; secondary bootstrap) OS/8 uses for tables and their initial values are
; unimportant. It suffices to simply copy all of the first half of block zero
; to page 7600, field 1.
;
; All this discussion presupposes a single page system handler, as we have
; here. For a two page handler BUILD will put the second page in the first
; half of block 66 on the system device and I believe (although I can't
; guarantee it) that the second half of this block also contains an image
; of the OS/8 resident code at page 7600, field 1. This would make it the
; same as, excepting the bootstrap part, the first half of block zero. In
; the case of a two page handler, the secondary bootstrap is also responsible
; for loading the second handler page from block 66 into page 7600, field 2.
; OS/8 bootstrap code (secondary bootstrap).
;
; Once everything has been loaded, the secondary bootstrap can simply do a
; "CDF CIF 0" and then jump to location 7600 to load the keyboard monitor.

Page 37

BTS6120_Listing
;
; The primary bootstrap for the SBC6120 RAM and IDE disks are six words
; loaded in locations 0 thru 5:
;
; 0000/ 6206 PR0 / execute a panel request
; 0001/ 0001 1 / 1 for RAM disk, 4 for IDE disk
; 0002/ 0100 0100 / read one page into field zero
; 0003/ 0000 0000 / location zero
; 0004/ 0000 0000 / from page/block zero of the device
; 0005/ 7402 HLT / should never get here
;
; If all goes well, the HLT in location 5 is never executed - it gets
; overwritten by the secondary bootstrap code before the ROM returns from
; the PR0 function.
;
; The B (BOOT) command in BTS6120 actually bypasses the primary bootstrap
; step and simply reads block zero of the boot device into page zero, field
; zero directly. The VM01 and ID01 secondary bootstraps all contain a special
; "key" in words 0 thru 4, the ones which would normally overwrite the primary
; boostrap, and BTS6120 looks for this key to identify a bootable volume.
; If the key is found, then BTS6120 simply jumps to main memory location 5
; to start the secondary bootstrap and finish loading OS/8.
;
; This system should also work for any other, non OS/8, system provided that
; it uses the same primary bootstrap shown above and that its secondary boot
; contains the special key in the first five words. As long as the secondary
; bootstrap starts at offset 5, the remainder of its code is unimportant to
; BTS6120 and it can do anything it likes.
� .TITLE Boot Sniffer

; The secondary bootstraps for both VM01 and ID01 devices contain a special
; key, the ASCIZ string "BOOT", in the first five words. The caller is
; expected to read block zero of the boot device into memory, and then call
; this routine to examine page zero, field zero, of main memory to determine
; if a valid secondary bootstrap exists. If the key is found, then the LINK
; will be cleared on return...
CKBOOT: TAD [BOOKEY-1] ; point X1 to the key string

DCA X1 ; ...
NL7777 ; and point X2 to page zero of main memory
DCA X2 ; ...

CKBOO1: CLL ; be sure the LINK is in a known state
TAD @X1 ; get the next word of the key
SNA ; have we done them all ?
.POPJ ; yes - return success
CIA ; make it negative
CPD ; address main memory now
TAD @X2 ; and compare our key to what's there
AND ZK177 ; (PAL8 likes to set the high bit for ASCII!)
SPD ; (back to panel memory)
STL ; assume that we failed
SZA CLA ; did the key match ?
.POPJ ; nope - return with the LINK set
JMP CKBOO1 ; yes - keep testing...

; Ok, here it is - the magic key that makes a volume bootable!
BOOKEY: .ASCIZ /BOOT/
� .TITLE B Command - Boot Disk

; The B command boots, or at least it tries to, either RAM or IDE disk.
; It can be used with an argument to specify the device to be booted, or
; without to ask BTS6120 to search for a bootable volume. For example:
;
; >B VM - boot device VMA0
; >B ID - boot device IDA0
; >B - search VMA0, then IDA0, for a bootstrap
;
; If no valid bootsrap can be found, then the message "?Not bootable" is
; printed.
;
; NOTE: It is currently only possible to bootstrap from unit zero for RAM

Page 38

BTS6120_Listing
; disk, or partition zero in the case of IDE disk.
BOOT: .PUSHJ @ZSPACMP ; get the next non-space character

SNA CLA ; is it the end of the line ?
JMP BOOT1 ; yes - go search for a bootstrap
.PUSHJ @ZBACKUP ; nope - backup to the first letter
.PUSHJ @[NAMENW] ; and read the boot device name
.PUSHJ @ZEOLNXT ; now there has to be an EOL

; Here if a specific device name is given on the command line...
TAD [BNAMES-1] ; point to the table of boot names
.PUSHJ @[MATCH] ; go call the right boot routine
SZL ; did we find a bootstrap ?
JMP NOBOOT ; nope - print an error message

; Now do the equivalent of a "ST 5" to start the bootstrap running...
BOOTGO: .PUSHJ @[CLRCPU] ; clear all saved main memory state

TAD [5] ; the secondary bootstrap starts at offset 5
DCA UPC ; ...
JMP @[CONT] ; cross your fingers!

; Here to search for a bootable device...
BOOT1: .PUSHJ BTVMA0 ; first try booting VMA0

SNL ; did we succeed?
JMP BOOTGO ; yes - go start the bootstrap
.PUSHJ BTIDA0 ; nope - try IDA0 next
SNL ; how about this?
JMP BOOTGO ; yes - use that on instead

; Here if no bootstrap can be found...
NOBOOT: JMS @ZERROR ; print an error and return to command level

ERRNBT ; ?NO BOOTSTRAP

; Here to attempt booting VMA0...
BTVMA0: JMS @ZPUSHJ1 ; (cross field call)

RDBOOT ; RAM disk primary bootstrap
.PUSHJ CKBOOT ; is this volume bootable?
SZL ; skip if yes
.POPJ ; not bootable - just give up
JMS @ZINLMES ; say
VMAMSG ; "-VMA0"
.PUSHJ @ZCRLF ; ...
CLL ; be sure to return success
.POPJ ; ...

; Here to attempt booting IDA0...
BTIDA0: JMS @ZPUSHJ1 ; (cross field call)

IDBOOT ; IDE disk primary bootstrap
.PUSHJ CKBOOT ; is this volume bootable?
SZL ; skip if yes
.POPJ ; not bootable - just give up
JMS @ZINLMES ; say
IDAMSG ; "-IDA0"
.PUSHJ @ZCRLF ; ...
CLL ; and be sure to return success
.POPJ ; ...

� .TITLE Parse FORMAT Unit/Partition Argument

; This routine will parse the unit/partition number argument for FORMAT.
; Since this command is little on the dangerous side (it does erase all the
; data on the disk, after all!), we'll go to the extraordinary length of
; asking for confirmation before we do anything. Confirmation is nothing
; more than a single character (we don't wait for a carriage return) - "Y"
; continues with the format and anything else, including ^C, aborts...
;
; Assuming the user confirms, then the unit/partition number will be
; returned in the AC. If the user aborts, or if there are any syntax
; errors, then we restart the command scanner and never return.
FMTARG: .PUSHJ @ZOCTNW ; read the unit/partition number

.PUSHJ @ZEOLTST ; that has to be followed by the end of line
Page 39

BTS6120_Listing
JMS @ZINLMES ; say
FCFMSG ; "Format partition/unit "
TAD WORD ; get the partition number once again
DCA VALUE ; TOCT corrupts WORD,
TAD VALUE ; so we have to stash it here
.PUSHJ @ZTOCT4S ; and type it out
.PUSHJ @[CONFRM] ; go wait for a "Y" or "y"
SNL CLA ; did he confirm?
JMP @ZRESTA ; no - just abort now
TAD VALUE ; yes he did - return the unit in the AC
.POPJ ; ...

; Here if the RAM disk unit number is illegal...
NOUNIT: JMS @ZERROR ; ...

ERRILV ; "?Illegal value"

; This little routine verifies that a hard disk is attached to the system.
; If there is none, then an error message is printed and the command aborted.
NODISK: CDF 1 ; there's a disk attached

TAD @[DKSIZE] ; ... only if DKSIZE != 0
CDF 0 ; ...
SZA CLA ; skip if there's no disk there
.POPJ ; yes - return now
JMS @ZERROR ; print a message and abort the command
ERRNDK ; "?No disk"

.PAGE
� .TITLE PM Command - Show and Edit Disk Partition Map

; The PM command allows the default mapping of OS/8 units to IDE disk
; partitions to be changed. PM accepts two arguments, both of which are
; optional. The first argument is the OS/8 logical unit number, and the
; second argument a partition number, in octal. Used without any arguments,
; the PM command will display a list of all eight OS/8 units and their current
; mappings. With one argument, PM will display only the mapping for that
; unit, and with two arguments PM will change the mapping of that unit.
;
; >PM u pppp - map OS/8 ID01 unit u to IDE partition pppp
; >PM u - display the mapping for unit u
; >PM - display the mapping for all units
;
PMEDIT: .PUSHJ @ZSPACMP ; get the next non-space character

SNA CLA ; is it the end of the line ?
JMP PMALL ; yes - show the entire map
.PUSHJ @ZBACKUP ; nope - backup and read this character
.PUSHJ @ZOCTNW ; it should be a unit number
TAD WORD ; get the value we read
AND [7770] ; and the unit number must be less than 7
SZA CLA ; ??
JMP PMEDI1 ; nope - "Illegal value"
TAD WORD ; transfer the unit number
DCA COUNT ; to COUNT for later use

; See if there's also a partition number on the line...
.PUSHJ @ZSPACM0 ; get the next non-space character
SNA CLA ; is it the end of the line?
JMP PMSHOW ; yes - print the mapping for this unit only
.PUSHJ @ZBACKUP ; nope - read what comes next
.PUSHJ @ZOCTNW ; this should be the partition number
.PUSHJ @ZEOLTST ; and then we have to be at the EOL

; Here to change the mapping for a specific unit...
TAD COUNT ; get the unit number
TAD [PARMAP-1] ; and make an index into the mapping table
DCA X1 ; ...
CDF 1 ; PARMAP lives in field one
TAD WORD ; get the desired mapping
DCA @X1 ; and update the partition table
CDF 0 ; back to this field
.POPJ ; and we're all done

Page 40

BTS6120_Listing
; Here if the unit number is illegal...
PMEDI1: JMS @ZERROR ; say

ERRILV ; "?Illegal value" and abort

; Here to show all eight entries in the entire partition map...
PMALL: DCA COUNT ; start with unit zero

.PUSHJ PMSHOW ; and show the mapping for that unit
ISZ COUNT ; now onto the next one
TAD COUNT ; have we done eight ?
TAD [-10] ; ???
SZA CLA ; well ?
JMP PMALL+1 ; nope - keep going
.POPJ ; yes, we can quit now

; Here to show the mapping for the unit in COUNT...
PMSHOW: JMS @ZINLMES ; say

PM1MSG ; "Unit "
TAD COUNT ; get the selected unit
.PUSHJ @[TDIGIT] ; and type it
JMS @ZINLMES ; now say
PM2MSG ; " mapped to partition "
TAD COUNT ; get the count again
TAD [PARMAP-1] ; and index the partition table
DCA X1 ; ...
CDF 1 ; the partition table lives in field 1
TAD @X1 ; get the partition mapped to this unit
CDF 0 ; ...
JMP @ZTOCT4C ; type it, in octal, and a CRLF

� .TITLE Disk Formatter, Pass 1

; Pass one of the RAM/IDE disk formatter writes every block with a simple
; test pattern consisting of alternating words filled with the block number
; and its complement. Although it's not too creative, this pattern does do
; two things - it guarantees that each block is unique (so we can make sure
; the disk addresssing is working!) and it does ensure that every bit gets
; tested with a zero and a one (so we can make sure the data lines are
; working).
;
; This routine expects that a number of memory locations will be initialized
; before it's called. RECSIZ must contain the negative of the logical record
; size for the device (-256 for IDE disk or -128 for RAM disk). FMTCNT should
; contain the negative of the device size, in blocks/pages, and FMTWRP (a
; location in this routine!) must be initialized with the address of the
; disk write routine...
FMTP1: JMS @ZINLMES ; say

FM1MSG ; ... "Writing "
CDF 1 ; ...
DCA @ZDKRBN ; reset the current disk block
DCA @ZRDPAGE ; and page numbers

; Fill the disk buffer with the test pattern...
FMTP11: TAD RECSIZ ; get the negative of the record size

CLL CML RAR ; and divide it by two
DCA COUNT ; since we'll fill the buffer in word pairs
TAD [DSKBUF-1] ; point X1 to the disk buffer
DCA X1 ; ...
CDF 1 ; (the disk buffer is in field 1)

FMTP12: TAD FMTCNT ; get the current block/page number
DCA @X1 ; store that
TAD FMTCNT ; then store its complement
CMA ; ...
DCA @X1 ; in the next word
ISZ COUNT ; have we done the whole buffer?
JMP FMTP12 ; nope - keep filling
CDF 0 ; return to our default field

; Write the buffer to the disk...
JMS @ZPUSHJ1 ; (cross field call)
PNLBUF ; setup our temporary buffer in field 1
TAD RECSIZ ; pass the record size to the I/O routine

Page 41

BTS6120_Listing
JMS @ZPUSHJ1 ; (cross field call)

FMTWRP: .BLOCK 1 ; modified to either DISKWR or RAMDWR
SZL ; were there any errors ?
JMP @[DIOERR] ; yes - quit now

; See if we've done the whole disk...
CLA ; ...
ISZ FMTCNT ; increment the page/block counter
SKP ; not done yet - keep going
.POPJ ; all done!

CDF 1 ; disk data lives in field 1
ISZ @ZDKRBN ; increment the disk block number
ISZ @ZRDPAGE ; and the RAM disk page number
CDF 0 ; back to safe ground

; Print a dot every so often to make a simple "progress bar"...
TAD RECSIZ ; get the current record size
CMA ; and make it a mask for the lower bits
AND FMTCNT ; apply it to the current block/page number
SZA CLA ; ...
JMP FMTP11 ; not time for a dot yet
.PUSHJ @[TDOT] ; print a dot to show our progress
JMP FMTP11 ; and another page or block

.PAGE
� .TITLE Disk Formatter, Pass 2

; Pass two of the RAM/IDE disk formatter reads back every block and verifies
; that the test pattern written by pass 1 is there. If any block doesn't
; contain the data we expect, then a "Verification error" message will be
; printed, but verification continues. This routine expects all the same
; data to be set up in FMTCNT and RECSIZ as Pass 1, and in addition it
; expects FMTRDP to be initialized with the address of the disk read routine.
FMTP2: JMS @ZINLMES ; say

FM2MSG ; "Verifying"
CDF 1 ; ...
DCA @ZDKRBN ; reset the current disk block
DCA @ZRDPAGE ; and page numbers
CDF 0 ; ...

; Read the next block/page from the disk...
FMTP21: JMS @ZPUSHJ1 ; (cross field call)

PNLBUF ; setup a temporary disk buffer in panel memory
TAD RECSIZ ; pass the record size to DISKRD
JMS @ZPUSHJ1 ; (cross field call)

FMTRDP: .BLOCK 1 ; gets modified to either DISKRD or RAMDRD!
SZL ; any I/O errors ?
JMP @[DIOERR] ; yes - just give up now

; Verify that the data in the buffer matches what we wrote...
TAD RECSIZ ; and get the block/page size
CLL CML RAR ; divide it by two
DCA COUNT ; because we'll test in double word pairs
TAD [DSKBUF-1] ; point X1 to the disk buffer
DCA X1 ; ...
CDF 1 ; (disk buffer lives in field 1)

FMTP22: TAD FMTCNT ; get the current block/page number
CIA ; make it negative
TAD @X1 ; and compare to the first word in the buffer
SZA CLA ; it matches, no?
JMP FMTP29 ; no - verify error!
TAD @X1 ; the second word is the complement of the page
TAD FMTCNT ; so that plus this
IAC ; plus 1 should be zero!
SZA CLA ; are we right?
JMP FMTP29 ; no - verify error!
ISZ COUNT ; have we done the whole buffer?
JMP FMTP22 ; nope - keep testing
CDF 0 ; return to our regular field

; See if we've done the whole disk...
Page 42

BTS6120_Listing
FMTP23: ISZ FMTCNT ; increment the page/block counter

SKP ; not done yet - keep going
.POPJ ; all done!

CDF 1 ; disk data lives in field 1
ISZ @ZDKRBN ; increment the disk block number
ISZ @ZRDPAGE ; and the RAM disk page number
CDF 0 ; back to safe ground

; Print a dot every so often to make a simple "progress bar"...
TAD RECSIZ ; get the current record size
CMA ; and make it a mask for the lower bits
AND FMTCNT ; apply it to the current block/page number
SZA CLA ; ...
JMP FMTP21 ; not time for a dot yet
.PUSHJ @[TDOT] ; print a dot to show our progress
JMP FMTP21 ; and another page or block

; Here if one (or more) words don't match..
FMTP29: CDF 0 ; restore the usual field

.PUSHJ @ZCRLF ; we're in the middle of a line now
JMS @ZINLMES ; so start a new one and print
ERRDSK ; "?Verification error, block/page "
CDF 1 ; (disk data is in field 1)
TAD @ZDKRBN ; get the current block/page number
CDF 0 ; ...
.PUSHJ @ZTOCT4C ; and type it (in octal)
JMP FMTP23 ; better luck with the next block

� .TITLE DF Command - Format IDE Disk Partition

; The DF command will "format" an IDE disk partition. The name is a misnomer
; because there's nothing about an IDE disk that needs formatting in the way
; a floppy does, but this command does write and then read back every single
; block of the partition which serves the useful function of testing the disk.
; It works in two passes - the first pass writes every block with a test
; pattern, and the second pass reads and verifies every block for the correct
; data.
;
; >DF pppp - format disk partition pppp
;
DFRMAT: .PUSHJ @[NODISK] ; verify that a hard disk is attached

.PUSHJ @[FMTARG] ; get the partition and ask for confirmation
CDF 1 ; the IDE disk data lives in field one
DCA @[DKPART] ; save the partition number
CDF 0 ; ...
TAD ZM256 ; the record size for IDE disk is 256 words
DCA RECSIZ ; ...

; Do pass 1...
DCA FMTCNT ; an IDE partition always holds 4096 blocks
TAD [DISKWR] ; point to the correct I/O routine
DCA @[FMTWRP] ; and point pass 1 towards that
.PUSHJ @[FMTP1] ; go do pass 1

; And do pass 2...
DCA FMTCNT ; reset the block count to 4096
TAD [DISKRD] ; and point pass 2 to the disk read routine
DCA FMTRDP ; ...
.PUSHJ FMTP2 ; and away we go!

; We've tested the entire disk...
FRDONE: JMS @ZINLMES ; let the operator know we're done

FM3MSG ; "Finished"
JMP @ZCRLF ; finish the line and we're done

� .TITLE RF Command - Format a RAM Disk

; The RF command will "format" a RAM disk virtual drive and it's essentially
; identical to the DF command that formats IDE disks.
;
; >RF u - format RAM disk unit u
;

Page 43

BTS6120_Listing
RFRMAT: .PUSHJ @[FMTARG] ; get the unit and ask for confirmation

CDF 1 ; the RAM disk data lives in field one
DCA @[RDUNIT] ; save the unit
CDF 0 ; ...
JMS @ZPUSHJ1 ; (cross field call)
RAMSEL ; try to select this RAM disk unit
SZL CLA ; was the unit number legal ??
JMP @[NOUNIT] ; nope - quit while we're ahead!
TAD ZM128 ; the record size for RAM disk is 128 words
DCA RECSIZ ; ...

; Do pass 1...
CDF 1 ; get the size of this RAM disk unit
TAD @[RAMUSZ] ; which is left here by RAMSEL
DCA FMTCNT ; save it for pass 1
CDF 0 ; ...
TAD [RAMDWR] ; get the correct I/O routine
DCA @[FMTWRP] ; and point pass 1 towards that
.PUSHJ @[FMTP1] ; go do pass 1

; And do pass 2...
CDF 1 ; get the size of this RAM disk unit
TAD @[RAMUSZ] ; which is left here by RAMSEL
DCA FMTCNT ; save it for pass1
CDF 0 ; ...
TAD [RAMDRD] ; and point pass 2 to the disk read routine
DCA FMTRDP ; ...
.PUSHJ FMTP2 ; and away we go!

; We've tested the entire disk...
JMP FRDONE ; say "Finished" and we're done!

.PAGE
� .TITLE LP Command - Load Binary Paper Tapes from the Console

; The LP command loads a "paper tape" in standard PDP-8 BIN loader format
; from the console. If the console is actually an ASR-33 and you actually
; have a real PDP-8 paper tape, then this will probably even work, but a more
; likely situation is that you're using a PC with a terminal emulator. In
; that case the paper tape image can be downloaded from the PC's disk.
;
; The loader accepts all standard BIN data frames, including field changes,
; and correctly calculates and verifies the tape checksum. If the checksum
; matches then the number of words loaded is printed - otherwise a checksum
; error message is generated. When initially started, this routine ignores
; all input until two consectutive leader codes (octal 200) are found - this
; allows us to ignore any extra ASCII characters from the terminal emulator
; (such as carriage returns, spaces, etc).
;
; Since we're using the real console, the same one that you're typing
; commands on, for input we have a problem in that we need some way to
; terminate loading. Control-C won't work since the BIN loader eats all
; eight bit characters. A hardware reset isn't a good idea, since the POST
; memory test will erase everything we've loaded. Instead we use a special
; routine, CONGET, to read characters from the console and this routine has a
; timeout built in. If we go approximately 5 seconds without any input then
; the loader is terminated.
CONLOD: .PUSHJ @ZEOLNXT ; this command has no operands

DCA PNLMEM ; files are always lodaded into main memory

; Look for two consecutive bytes of leader code...
BINLO1: TAD [-2] ; we need two bytes of leader/trailer

DCA COUNT ; ...
BINLO2: .PUSHJ CONGET ; go read a byte of input

TAD [-200] ; is this a leader code ??
SZA CLA ; ??
JMP BINLO1 ; no -- keep looking for two
ISZ COUNT ; yes -- is this the second in a row ??
JMP BINLO2 ; no -- go look for the next one

; Here after we have 2 bytes of leader -- look for the end of the leader...
Page 44

BTS6120_Listing
BINLO3: .PUSHJ CONGET ; get another byte of data

TAD [-200] ; are we still in the leader ??
SNA ; ???
JMP BINLO3 ; yes -- keep looking
TAD [200] ; no -- restore the character
DCA WORD ; and remember it for later

; Now actually start loading data...
DCA CHKSUM ; start with a zero checksum
TAD [200] ; set the default load address to location 200
DCA ADDR ; ...
DCA ADRFLD ; in field zero

; Decode the type of the next load record...
BINLO5: CAM ; ...

TAD WORD ; Get the last character we read
AND [200] ; Is this a single byte frame ???
SZA CLA ; ??
JMP BINLO7 ; Yes -- this is EOF or a field setting

; Load a two frame record (either data or an address)...
TAD WORD ; get the first byte back again
DCA BINCH1 ; and remember that
.PUSHJ CONGET ; then go read the next byte
DCA BINCH2 ; and save that
TAD BINCH1 ; get the first byte
AND [77] ; trim it to just 6 bits
BSW ; put it in the left half
MQL ; and save it in the MQ for now
TAD BINCH2 ; then get the second character
AND [77] ; trim it to 6 bits too
MQA ; and OR it with the first character
DCA VALUE ; remember what we read

; Determine what to do with this word...
.PUSHJ CONGET ; look ahead one byte
DCA WORD ; save that character
TAD WORD ; and get it back
TAD [-200] ; is this the end of the tape ??
SNA CLA ; ??
JMP BINLO8 ; yes -- we read a checksum word
TAD CHKSUM ; no -- checksum the two characters we read
TAD BINCH1 ; ...
TAD BINCH2 ; ...
DCA CHKSUM ; ...
TAD BINCH1 ; then look at the first character
AND [100] ; is this an address or data frame ??
SZA CLA ; skip if it's data
JMP BINLO6 ; no -- it is an address

; Load this word of data into memory...
TAD VALUE ; get the word back
.PUSHJ @ZDANDV ; and write it into memory
ISZ ADDR ; automatically advance the address
NOP ; (and ignore any wrap around)
JMP BINLO5 ; then go process the next frame

; This word is an address...
BINLO6: TAD VALUE ; get the 12 bits of data

DCA ADDR ; and change to that address
JMP BINLO5 ; then go process the next frame

; Here of the current frame is a field setting...
BINLO7: TAD WORD ; get the last character back again

AND [100] ; see if it is really a field frame
SNA CLA ; ???
JMP BINLO8 ; no -- treat it like a trailer code
TAD WORD ; get the field back
AND ZK70 ; we only want these bits
DCA ADRFLD ; and change to the selected field
.PUSHJ CONGET ; Then look ahead one byte
DCA WORD ; ...

Page 45

BTS6120_Listing
JMP BINLO5 ; and go process that frame

; Here when we find the checksum byte...
BINLO8: TAD VALUE ; get the checksum byte

CIA ; make it negative
TAD CHKSUM ; and add it to our checksum
DCA CHKSUM ; this should leave zero
.PUSHJ @[TCKSUM] ; go type the checksum and return
JMP BINLO1

; Temporary storage for BIN loader routine...
BINCH1: .BLOCK 1 ; the first of a two character frame
BINCH2: .BLOCK 1 ; the second of a two character frame
� .TITLE Paper Tape Console Input Routine

; This routine will read a character from the console, waiting if there is
; none ready right now, and with a timeout if one doesn't arrive soon. It is
; intended to be used only with the paper tape binary loader routine, and most
; "textual" input should be done via the INCHRS or INCHWL routines. Since the
; user cannot type control-C to abort the paper tape loader (data is being read
; from the console, remember ?) this routine provides a timeout feature to
; prevent the monitor from becoming 'hung'. If no character is received from
; the console in approximately 10 seconds, a control-C is simulated by jumping
; to RESTA.
FTCONT=200. ; approximately 10 seconds with a 4.9152Mhz clock

CONGET: CLA ; ...
TAD [-FTCONT] ; get the console timeout time
DCA IRMA ; and set up a counter

; Try to read a character...
CONGE1: KSF ; is there a character there ???

JMP CONGE2 ; no -- check the timer
CLA ; yes -- clear the timer
KRB ; and get the character
.POPJ ; then return that

; Here to keep the timeout counter. The loop between CONGE1 and CONGE2
; requires 56 states, or approximately .1835 seconds at 2.5Mhz. This is
; executed FTCONT times for the overall timeout.
CONGE2: IAC ; increment the timer

SZA ; has it counted to 4096 ???
JMP CONGE1 ; no -- keep waiting
ISZ IRMA ; yes -- have we waited long enough ??
JMP CONGE1 ; no -- wait a little longer
NL0003 ; yes -- simulate a control-C
.PUSHJ @ZOUTCHR ; echo ^C
JMP @ZRESTA ; and restart

.PAGE
� .TITLE RD and DD Commands - Dump Disk (RAM and IDE) Records

; These commands dump one or more disk records, in octal, to the console.
; What you get from DP is exactly how the OS/8 device driver sees the disk
; data. Each command accepts one, two or three parameters. The first is unit
; number for RAM Disk (RD) commands, or the partition number for IDE Disk (DD)
; commands. The second parameter is the number of the block to be dumped, in
; octal. If this number is omitted then the ENTIRE disk will be dumped which,
; although legal, will take quite a while! The third parameter is the count
; of pages (for RAM Disk) or blocks (for IDE disk) to be dumped and, if
; omitted, this defaults to 1. For example:
;
; >RD 0 0 - dump only page 0 (the boot block) of RAM disk unit 0
; >DD 2 100 - dump only page 100 (octal) of IDE partition 2
; >RD 1 100 77 - dump 64 (77 octal) pages of unit 1 from 100 to 177
; >DD 0 - dump ALL of IDE partition zero (4095 blocks!)
;

; Enter here for the RD command...
RDDUMP: TAD [RAMDRD] ; point to the RAM disk read routine

Page 46

BTS6120_Listing
DCA RDPTR ; modify the code to use that
TAD ZM128 ; get the record size for RAM disk
DCA RECSIZ ; and save that
JMP PARSDX ; fall into the regular code now

; And here for the DD command...
DDDUMP: .PUSHJ @[NODISK] ; verify that a hard disk exists

TAD [DISKRD] ; point to the IDE disk read routine
DCA RDPTR ; and use that instead
TAD ZM256 ; IDE disk uses 256 word records
DCA RECSIZ ; ...

; Parse the argument lists for either command...
PARSDX: .PUSHJ @ZOCTNW ; read the unit/partition number (required)

CDF 1 ; all disk data lives in field 1
TAD WORD ; get what we found
DCA @[DKPART] ; save both the partition number
TAD WORD ; ...
DCA @[RDUNIT] ; and the unit number
DCA @ZDKRBN ; set the default starting block/page to zero
DCA @ZRDPAGE ; ...
CDF 0 ; back to the current field
DCA RECCNT ; make the default record count the whole disk

; See if there's a starting page number on the command line...
.PUSHJ @ZSPACM0 ; are there any more characters in the command?
SNA CLA ; skip if there are
JMP DDUMP1 ; nope - start dumping now
.PUSHJ @ZBACKUP ; yes - re-read the character
.PUSHJ @ZOCTNW ; and read the page/block number
CDF 1 ; back to field 1
TAD WORD ; get the starting block/page number
DCA @ZDKRBN ; and save it for both RAM disk and IDE disk
TAD WORD ; ...
DCA @ZRDPAGE ; ...
CDF 0 ; back to our field
NLM1 ; now the default record count is one
DCA RECCNT ; ...

; See if there's a page/block count too..
.PUSHJ @ZSPACM0 ; still more characters?
SNA CLA ; skip if there are
JMP DDUMP1 ; nope - start dumping now
.PUSHJ @ZBACKUP ; yes - re-read the character
.PUSHJ @ZOCTNW ; and read the page count
TAD WORD ; ...
CIA ; make it negative for ISZ
DCA RECCNT ; and save the count
.PUSHJ @ZEOLTST ; finally, this has to be the end of the line

; Read a page from the disk into the panel memory buffer and dump it...
DDUMP1: JMS @ZPUSHJ1 ; (call field 1 routine)

PNLBUF ; set the disk buffer to DSKBUF
TAD RECSIZ ; pass the record size to the I/O routine
JMS @ZPUSHJ1 ; (cross field call)

RDPTR: .BLOCK 1 ; gets overwritten with DISKRD or RAMDRD!
SZL ; were there any errors detected ?
JMP DIOERR ; yes - report it and quit
TAD RECSIZ ; nope - get the size of this record
.PUSHJ @[DDBUF] ; and go dump the DSKBUF
CDF 1 ; disk data lives in field 1
ISZ @ZDKRBN ; increment both the IDE block
ISZ @ZRDPAGE ; and RAM disk page
CDF 0 ; ...
ISZ RECCNT ; have we done all we need to?
JMP DDUMP1 ; nope - go dump another one
.POPJ ; yes - we're done (finally!!)

; Here if a disk I/O error occurs...
DIOERR: CDF 0 ; just in case

DCA VALUE ; save the error code for a minute
JMS @ZINLMES ; say

Page 47

BTS6120_Listing
ERRDIO ; "?I/O Error "
TAD VALUE ; get the error status
.PUSHJ @ZTOCT4C ; type it and a CRLF
JMP @ZRESTA ; and abort this command completely

� .TITLE RL and DL Commands - Load Disk (RAM and IDE) Records

; The DL and RL commands allow a disk to be downloaded over the console
; serial port. The format of the data expected is identical that that
; generated by the RD and DD (dump RAM/IDE disk) commands, which makes it
; possible to upload a disk image to the PC and then later download the same
; image back to the SBC6120. Since all the data is simple printing ASCII
; text, any terminal emulator program can be used to capture and replay the
; data will suffice.
;
; >RL u - download data to RAM disk unit u
; >DL pppp - download data to IDE disk partition pppp

; Enter here for the RL command...
RLLOAD: TAD [RAMDWR] ; point to the RAM disk write routine

DCA WRPTR ; modify the code to use that
TAD ZM128 ; set the record (page) size for RAM disk
DCA RECSIZ ; ...
JMP DLOAD ; fall into the regular code

; Enter here for the DL command...
DLLOAD: .PUSHJ @[NODISK] ; verify that a hard disk is attached

TAD [DISKWR] ; this time use the IDE disk write routine
DCA WRPTR ; ...
TAD ZM256 ; and the record (block) size is 256
DCA RECSIZ ; ...

; Parse the argument for the DL and RL commands...
DLOAD: .PUSHJ @ZOCTNW ; read the unit/partition number (required)

.PUSHJ @ZEOLTST ; that has to be followed by the end of line
CDF 1 ; all disk data lives in field 1
TAD WORD ; get the number entered
DCA @[RDUNIT] ; and set the RAM disk unit number
TAD WORD ; ...
DCA @[DKPART] ; and the IDE disk partition number
CDF 0 ; back to our field now

; Here to read another disk page of data from the host...
DLOAD1: TAD RECSIZ ; pass the block size in the AC

.PUSHJ @[LDBUF] ; load the disk buffer from the serial port
CDF 1 ; (disk data lives in field 1)
DCA @ZDKRBN ; save the address of the block we read
TAD @ZDKRBN ; ...
DCA @ZRDPAGE ; and the page number too
CDF 0 ; (back to our field now)
JMS @ZPUSHJ1 ; (call field 1 routine)
PNLBUF ; set the disk buffer to DSKBUF
TAD RECSIZ ; pass the record size to the I/O routine
JMS @ZPUSHJ1 ; (call a field 1 routine)

WRPTR: .BLOCK 1 ; gets modified to either DISKWR or RAMDWR
SZL ; were there any I/O errors?
JMP DIOERR ; yes - go report that and quit
JMP DLOAD1 ; go read another page

.PAGE
� .TITLE Dump Disk Buffer on Console

; This routine will dump the contents of DSKBUF on the console in ASCII.
; For each block dumped the output format consists of 33 lines of data, where
; the first 32 lines contain a disk address in the format <block> "." <offset>
; (e.g. "0122.0160" is word 160 (octal) of block 122 (octal)) followed by 8
; words of data, also in octal. The 33rd line contains just a single octal
; number, a checksum of all 256 words in the block.
;
; This format is exactly the same input that's accepted by the LDBUF, which
; allows you to capture the output of a disk dump on a PC terminal emulator

Page 48

BTS6120_Listing
; and then download the same data later to a different disk. This is the
; primary motivation for the checksum - it isn't too useful to humans, but
; it will guard against errors in the upload/download procedure.
;
; This routine should be called with the number of words to dump in the
; AC, which will normally be either -256 (to dump an IDE block) or -128
; (for a RAM disk page).
DDBUF: DCA DDCNT ; save the count of words to dump

DCA COUNT ; and clear the current word count
TAD [DSKBUF-1] ; set up X1 to point to the buffer
DCA X1 ; ...
DCA CHKSUM ; and clear the checksum

; Start a new line of data...
DDBUF2: CDF 1 ; ...

TAD @ZDKRBN ; get the page/block number we're dumping
CDF 0 ; ...
.PUSHJ @ZTOCT4 ; type it in octal
.PUSHJ @[TDOT] ; then type the separator
TAD COUNT ; then type the offset
.PUSHJ @[TOCT3] ; ...
.PUSHJ @[TSLASH] ; another separator character
.PUSHJ @ZTSPACE ; ...

; Dump eight words of data, in octal...
DDBUF3: CDF 1 ; the disk buffer is in field 1

TAD @X1 ; get another word
CDF 0 ; and go back to our field
DCA VALUE ; save it for a minute
TAD VALUE ; get it back
TAD CHKSUM ; and accumulate a checksum
DCA CHKSUM ; ...
TAD VALUE ; now we're ready to type the data
.PUSHJ @ZTOCT4S ; in octal, with a space
ISZ COUNT ; count the number we've done
TAD COUNT ; ...
AND ZK7 ; have we done a complete row of eight?
SZA CLA ; ???
JMP DDBUF3 ; no - keep going

; Here after we've finished a line of eight data words...
.PUSHJ @ZCRLF ; start a new line
TAD COUNT ; see if we've done the whole page/block
TAD DDCNT ; compare to the block size
SZA CLA ; ???
JMP DDBUF2 ; not there yet - keep dumping
TAD CHKSUM ; type just the checksum
JMP @ZTOCT4C ; in octal, with a CRLF, and we're done

; Local storage for DDBUF...
DDCNT: .BLOCK 1 ; the number of words in this buffer
� .TITLE Load Disk Buffer from Console

; This routine loads the disk buffer with data from a disk block image
; transmitted over the console port. The format of the data expected is
; identical that that generated by the DDBUF routine, which makes it possible
; to upload a disk image to the PC and then later download the same image back
; to the SBC6120 with DL. Since all the data is simple printing ASCII text,
; any terminal emulator program can be used to capture and replay the data.
;
; LDBUF prompts for each line of data with a ":", and most terminal emulator
; programs for the PC can be set to look for this prompting character before
; transmitting the next line. This eliminates the need to insert fixed delays
; to avoid overrunning the SBC6120. Since LDBUF reads only printing ASCII
; characters, a download can be aborted at any time just by typing a control-C
; and there's no need for a timeout the way there is with loading paper tape
; images.
;
; The expected block size, either -128. for RAM disk or -256. for IDE disk,
; should be passed in the AC. The data read is left in DSKBUF, and the

Page 49

BTS6120_Listing
; page/block number, extracted from the data, is left in LDPAGE. Note that
; in the event a checksum or syntax error is found, LDBUF prints an error
; message and restarts the command scanner. In that case control never
; returns to the caller!
LDBUF: DCA DDCNT ; save the expected block size

TAD [DSKBUF-1] ; initialize X1 to point at our buffer
DCA X1 ; ...
DCA COUNT ; count the data words read here
STA ; the current disk page is unknown
DCA LDPAGE ; ...
DCA CHKSUM ; clear the checksum accumulator

; Read the next line of data...
LDBUF2: TAD [":"] ; prompt for data with a ":"

.PUSHJ @[INCHWL] ; and read an entire line of data
TAD COUNT ; see how many words we've read so far
TAD DDCNT ; is it time for the checksum?
SNA CLA ; ???
JMP LDBUF5 ; yes - go parse a checksum record

; First parse the disk page number and offset. The offset has to match the
; number of words we've already read, but the disk address is slightly more
; complicated. For the first data record in a page we allow the address to
; be anything, and that tells us which disk page is to be written. Each data
; record after that up to the end of the page has to have the same disk
; address as the first one. This allows disk pages to be loaded in any random
; order and, more importantly, it allows unused pages to be skipped.

.PUSHJ @ZOCTNW ; go read an octal number
TAD WORD ; get the value we scanned
CIA ; compare it to LDPAGE
TAD LDPAGE ; ???
SNA CLA ; do they match ?
JMP LDBUF3 ; yes - all is well
ISZ LDPAGE ; no - is this the first data record?
JMP @ZCOMERR ; not that either - the data is corrupt
TAD WORD ; yes - just use this page number without
DCA LDPAGE ; ... question

LDBUF3: TAD SAVCHR ; get the separator character
TAD [-"."] ; it has to be a "."
SZA CLA ; ???
JMP @ZCOMERR ; nope - bad load format
.PUSHJ @ZOCTNW ; now read the relative offset within the page
TAD WORD ; ...
CIA ; it has to match our data count
TAD COUNT ; does it?
SZA CLA ; ???
JMP @ZCOMERR ; nope - more bad data
TAD SAVCHR ; one last test
TAD [-"/"] ; the separator this time has to be a slash
SZA CLA ; ???
JMP @ZCOMERR ; another corrupted data record

; Now read the rest of the data record, which should consist of exactly
; eight data words, in octal...
LDBUF4: .PUSHJ @ZOCTNW ; scan the next data word

TAD WORD ; get the value we read
CDF 1 ; remember that the disk buffer is in field 1
DCA @X1 ; and store the data word
TAD WORD ; accumulate a checksum of the data words
TAD CHKSUM ; ... we read
DCA CHKSUM ; ...
CDF 0 ; back to home ground
ISZ COUNT ; count the number of words we've read
TAD COUNT ; let's have a look at it
AND ZK7 ; have we read exactly eight words?
SZA CLA ; skip if we have
JMP LDBUF4 ; no - go read another data word
.PUSHJ @ZGET ; yes - after eight data words
SZA CLA ; ... the next thing should be the EOL
JMP @ZCOMERR ; not EOL - this data is corrupted somehow
JMP LDBUF2 ; this is the EOL - go read another record

Page 50

BTS6120_Listing
; We get here when we're read 128 or 256 words of data - the next thing we
; expect to find is a checksum record, which is a single octal number all by
; itself. This has to match the checksum we've calculated or the data is
; corrupted.
LDBUF5: .PUSHJ @ZOCTNW ; scan an octal value

TAD WORD ; and get what we found
CIA ; ...
TAD CHKSUM ; compare it to the checksum we accumulated
SZA CLA ; they have to be the same!
JMP DERCKS ; they aren't - bad checksum for data
TAD SAVCHR ; get the next character
SZA CLA ; it has to be the EOL
JMP @ZCOMERR ; no - the syntax of this record is wrong

; The checksum matches - all is well!
TAD LDPAGE ; return the page number in the AC
.POPJ ; ...

; Here if the data checksum doesn't match...
DERCKS: JMS @ZERROR ; print a message and restart

ERRCKS ; ?DATA CHECKSUM MISMATCH

; Local storage for LDBUF...
LDPAGE: .BLOCK 1 ; page number being read

.PAGE
� .TITLE PC Command - Copy an IDE Disk Partition

; The PC command will copy an entire disk partition to another partition.
; It's a convenient way to create backups of OS/8 partitions, especially since
; most modern IDE drives have room for thousands of OS/8 partitions!
;
; >PC ssss dddd - copy IDE partition ssss to partition dddd
;
PCOPY: .PUSHJ @ZOCTNW ; read the source partition number

TAD WORD ; ...
DCA CPYSRC ; ...
.PUSHJ @[SPATST] ; the next character has to be a space
.PUSHJ @ZOCTNW ; then read the destination partition
TAD WORD ; ...
DCA CPYDST ; ...
.PUSHJ @ZEOLTST ; that'd better be all there is

; Ask for confirmation before overwriting the destination partition...
JMS @ZINLMES ; say
CCFMSG ; "Overwrite partition/unit "
TAD CPYDST ; and then type the partition number
.PUSHJ @ZTOCT4S ; ...
.PUSHJ @[CONFRM] ; then wait for a "Y" or "N"
SNL CLA ; did he answer yes???
JMP @ZRESTA ; nope - just quit now

; Prepare to begin copying...
JMS @ZINLMES ; say
CP1MSG ; ... "Copying "
CDF 1 ; reset the current block number
DCA @ZDKRBN ; ...
CDF 0 ; ...

; Read the next block from the SRC partition...
PCOPY1: JMS @ZPUSHJ1 ; (cross field call)

PNLBUF ; setup a temporary disk buffer in panel memory
TAD CPYSRC ; get the source partition
CDF 1 ; ...
DCA @[DKPART] ; and point DISKRD there
CDF 0 ; ...
TAD ZM256 ; the IDE record size is always 256 words
JMS @ZPUSHJ1 ; (cross field call)
DISKRD ; and go read a block from the disk
SZL ; disk error ??
JMP @[DIOERR] ; yes - go report it and give up

Page 51

BTS6120_Listing

; And now write it to the destination...
PCOPY2: JMS @ZPUSHJ1 ; (cross field call)

PNLBUF ; setup the panel memory disk buffer
TAD CPYDST ; change DKPART to the destination partition
CDF 1 ; ...
DCA @[DKPART] ; ...
CDF 0 ; ...
TAD ZM256 ; load the record size for DISKWR
JMS @ZPUSHJ1 ; (cross field call)
DISKWR ; and go write a block to the disk
SZL ; any disk errors?
JMP @[DIOERR] ; yes - give up

; Print a dot every so often to make a simple "progress bar"...
PCOPY3: CDF 1 ; ...

ISZ @[DKRBN] ; increment the block number
SKP ; still more to go
JMP PCOPY4 ; we've done all 4096 blocks!

TAD ZM256 ; the format command uses the record size as
CMA ; a mask for printing the progress bar
AND @[DKRBN] ; and so we will too
CDF 0 ; ...
SZA CLA ; time for another dot??
JMP PCOPY1 ; nope - just keep copying
.PUSHJ @[TDOT] ; print a dot to show our progress
JMP PCOPY1 ; and another page or block

; All done...
PCOPY4: CDF 0 ; ...

JMS @ZINLMES ; say
CP2MSG ; " Done"
JMP @ZCRLF ; and that's all!

.PAGE
� .TITLE Free Space for Future Expansion!

.PAGE 31
� .TITLE Type ASCII Strings

; This routine will type a ASCIZ string stored in field 1 using the standard
; OS/8 "3 for 2" packing system. This format is used by the monitor to store
; help and error messages. On call, the address of the string is passed in the
; AC and, on return, the AC will always be cleared.
OUTSTR: TAD [-1] ; auto index registers pre-increment

DCA X1 ; ...
NLM3 ; load the AC with -3
DCA DIGITS ; and initialize the character counter

; Get the next character and output it...
OUTST1: CDF 1 ; strings always live in field 1

ISZ DIGITS ; which character are we on?
JMP OUTST2 ; first or second - they're easy

; Extract the third character from a triplet...
NLM3 ; re-initialize the character counter
DCA DIGITS ; ...
NLM2 ; then load the AC with -2
TAD X1 ; and backup the string pointer
DCA X1 ; ...
TAD @X1 ; get the first word of the pair
AND ZK7400 ; get the upper four bits of the word
BSW ; position them in the upper bits of the byte
CLL RTL ; ...
MQL ; save it in the MQ for a while
TAD @X1 ; then get the second word again
AND ZK7400 ; the upper four bits again
BSW ; become the lower for bits of the byte
CLL RTR ; ...
MQA ; put the byte together
JMP OUTST3 ; and type it normally

Page 52

BTS6120_Listing

; Here for the first or second character of a triplet...
OUTST2: TAD @X1 ; get the character
OUTST3: AND ZK177 ; trim it to just seven bits

CDF 0 ; restore the original data field
SNA ; end of string ?
.POPJ ; yes - we can quit now
.PUSHJ @ZOUTCHR ; nope - type this one too
JMP OUTST1 ; and go do the next

; This routine does exactly the same thing as OUTSTR, except that it allows
; the message pointer to be passed in line, via a JMS instruction
INLMES: 0 ; call here via a JMS instruction

CLA ; ...
TAD @INLMES ; fetch the string address
.PUSHJ OUTSTR ; type it out
ISZ INLMES ; skip over the address
JMP @INLMES ; and return

; This routine will type an ASCIZ string, packed one character per word and
; terminated with a null character, on the terminal. The address of the
; string, -1, should be loaded into the AC before calling this routine, and
; the AC will always be cleared on return.
TASCIZ: DCA X1 ; save the pointer to the string
TASCI1: TAD @X1 ; and get the first character

SNA ; is this the end of the string ??
.POPJ ; yes -- quit now
.PUSHJ @ZOUTCHR ; no -- type this character
JMP TASCI1 ; and then loop until the end

; This routine is identical to TASCIZ, except that the string is stored in
; field 1, rather than field 0...
TASZF1: DCA X1 ; save the pointer to the string

CDF 1 ; the string is in field 1
TAD @X1 ; and get the next character
CDF 0 ; back to our field
SNA ; is this the end of the string ??
.POPJ ; yes -- quit now
.PUSHJ @ZOUTCHR ; no -- type this character
JMP TASZF1+1 ; and then loop until the end

� .TITLE Type SIXBIT Words, and Characters

; This routine will type the two character SIXBIT word contained in the AC.
; It always types exactly two characters, so if the second character is a null
; (00), then a trailing blank appears. The AC is cleared on return.
TSIXW: DCA WORD ; Save the 2 characters

TAD WORD ; And get them back
BSW ; Position the first one
.PUSHJ TSIXC ; And type it out
TAD WORD ; No -- get the second character

; And fall into the TSIXC routine

; This routine will type a single SIXBIT character from the right
; byte of the AC. The AC will be cleared on return.
TSIXC: AND [77] ; Trim the character to just 6 bits

TAD [" "] ; No -- convert the character to ASCII
JMP @[THCHAR] ; And type it out

� .TITLE Type Decimal Numbers

; This routine will type the contents of the AC in decimal. It always
; treats the AC as an unsigned quantity and will type numbers from 0 to 4095.
; It uses locations WORD and COUNT and the AC is always cleared on return.
TDECNW: DCA WORD ; remember the number to be typed

DCA DIGITS ; and clear the quotient
TAD WORD ; get the dividend back again

; Divide by 10 via repeated subtraction...
TDECN1: CLL ; make sure the LINK is clear

TAD [-10.] ; subtract 10 from the dividend
SNL ; did it fit ???

Page 53

BTS6120_Listing
JMP TDECN2 ; no -- go get the remainder
ISZ DIGITS ; yes -- increment the quotient
JMP TDECN1 ; and keep dividing

; Now figure the remainder...
TDECN2: TAD [10.] ; correct the remainder

.PUSH ; and save it on the stack
CLA ; get the quotient
TAD DIGITS ; ...
SNA ; is it zero ???
JMP TDECN3 ; yes -- proceed
.PUSHJ TDECNW ; no type that part first

; Here to type the digit and return...
TDECN3: .POP ; restore the remainder

JMP @[TDIGIT] ; type it in ASCII and return
� .TITLE Type Octal Numbers

; This routine will type a 4 digit octal number passed in the AC. It always
; prints exactly four digits, with leading zeros added as necessary. The AC
; will be cleared on return.
TOCT4: DCA WORD ; save the number to type

TAD [-4] ; and get the number of iterations
TOCTN: DCA DIGITS ; ...

; Extract one digit and print it...
TOCTL: TAD WORD ; get the remaining bits

CLL RTL ; shift them left 2 bits
RTL ; and then 2 more (remember the link!)
DCA SAVCHR ; remember that for a later
TAD SAVCHR ; and we also need it now
RAR ; restore the extra bit (in the link)
DCA WORD ; then remember the remaining bits
TAD SAVCHR ; get the digit back
AND ZK7 ; trim it to just 3 bits
.PUSHJ @[TDIGIT] ; type it out

; Here after we have typed another digit...
ISZ DIGITS ; is this enough ??
JMP TOCTL ; no -- keep typing
.POPJ ; yes -- quit now

; This routine is identical to TOCT4, except that it types only three digits
; with leading zeros. It's useful for printing eight bit quantities...
TOCT3: R3L ; throw away the most significant digit

DCA WORD ; save the value to be typed
NLM3 ; get the number of iterations
JMP TOCTN ; and join the regular code

; This small routine will type an octal number in the AC followed by a space.
TOCT4S: .PUSHJ TOCT4 ; then type the data in octal

JMP @ZTSPACE ; finally type a space and return

; This small routine will type an octal number from the AC followed by a CRLF.
TOCT4C: .PUSHJ TOCT4 ; and type that in octal

JMP @ZCRLF ; finish with a CRLF

.PAGE
� .TITLE Type 15 Bit Addresses

; This routine will type a 15 bit address, passed in location ADDR, and with
; the field is in location ADRFLD. The address will be typed as a 5 digit
; octal number, and then followed by a "/" character and a space. The initial
; contents of the AC are ignored and the AC is always cleared on return.
TADDR: CLA ; ...

TAD ADRFLD ; get the high 3 bits of the address
.PUSHJ @[TFIELD] ; type that out
TAD ADDR ; then get the address
.PUSHJ @ZTOCT4 ; and type all 12 bits of that
.PUSHJ @[TSLASH] ; type a slash as a separator

Page 54

BTS6120_Listing
JMP @ZTSPACE ; finish with a space

; This routine will type a single octal digit which represents a memory
; field. The field should be passed in the AC.
TFIELD: RAR ; right justify the field number

RTR ; ...
AND ZK7 ; trim it to just 3 bits
JMP @[TDIGIT] ; and fall into TDIGIT...

� .TITLE Scan Addresses

; This routine will read a 15 bit address into registers ADDR and ADRFLD.
RDADDR: .PUSHJ @[OCTNF] ; read the 15 bit address

TAD WORD ; get the low order bits
DCA ADDR ; and put them in ADDR
.POPJ ; that's it...

; This routine will read a 15 bit address into registers HIGH and HGHFLD.
RDHIGH: .PUSHJ RDADDR ; read a 15 bit address

TAD ADDR ; get the low order bits
DCA HIGH ; into HIGH
TAD ADRFLD ; get the field
DCA HGHFLD ; into HGHFLD
.POPJ ; and that's all

; This routine will read a 15 bit address into registers LOW AND LOWFLD.
RDLOW: .PUSHJ RDADDR ; the same thing as before

TAD ADDR ; ...
DCA LOW ; only the names have changed
TAD ADRFLD ; ...
DCA LOWFLD ; ...
.POPJ ; ...

� .TITLE Scan an Address Range

; This routine will read either one or two octal numbers which describe a
; range of memory addresses. A range may be a single number (in which case
; the starting and ending values are the same) or two numbers with a space
; character between them (in which case the first number is the starting value
; and the last is the ending value). The starting value is always returned in
; locations LOW/LOWFLD and ADDR/ADRFLD, and the ending value is placed in
; HIGH/HGHFLD. If two addresses were seen, the LINK will be set upon return;
; it is cleared if only one address was found.
RANGE: .PUSHJ RDLOW ; first read the low part of the range

.PUSHJ @ZSPACM0 ; get the next non-space character
TAD [-"-"] ; is it a range delimiter ??
SZA CLA ; ???
JMP RANGE1 ; no -- this must be the single address type

; Here for a two address range...
.PUSHJ RDHIGH ; go read the high order part of the range
TAD LOW ; make ADDR point to the starting point
DCA ADDR ; ...
TAD LOWFLD ; ...
DCA ADRFLD ; ...
.PUSHJ TSTADR ; then be sure the numbers are in order
CML ; ...
SZL CLA ; ???
.POPJ ; yes -- return with the link set
JMS @ZERROR ; no -- this isn't legal
ERRRAN ; ?WRONG ORDER

; Here for a single address range...
RANGE1: TAD LOW ; set the high equal to the low

DCA HIGH ; ...
TAD LOWFLD ; ...
DCA HGHFLD ; ...
CLL ; Then return with the link cleared
.POPJ ; ...

� .TITLE Address Arithmetic

Page 55

BTS6120_Listing
; This routine will increment the 15 bit address contained in registers
; ADDR and ADRFLD. If the address increments past 77777, the link will be
; 1 on return; otherwise it is always 0.
NXTADR: CLA CLL ; ...

ISZ ADDR ; increment the address
.POPJ ; no wrap around -- leave the field alone
TAD ADRFLD ; wrap around -- increment the field too
TAD [-70] ; are we already in field 7 ??
SPA ; ???
CML ; no -- make the LINK be cleared on return
TAD [70+10] ; restore and increment the field
AND ZK70 ; only allow these bits in the result
DCA ADRFLD ; and put it back
.POPJ ; ...

; This routine will compare the 15 bit address in registers ADDR and
; ADRFLD to the address in registers HIGH and HGHFLD. If ADDR/ADRFLD
; is less than HIGH/HGHFLD, the link will be zero on return. If ADDR/ADRFLD
; is greater then or equal to HIGH/HGHFLD, the link will be one.
TSTADR: CLA CLL ; clear the AC and set L = 0

TAD ADRFLD ; get the field
CMA IAC CML ; negate the field and set L = 1
TAD HGHFLD ; compare to the high field
SZA CLA ; are they equal ??
.POPJ ; no -- the LINK has the correct status
TAD HIGH ; yes -- compare the addresses
CMA CIA ; L = 0 now
TAD ADDR ; ...
CLA ; clear the AC
.POPJ ; but return the status in the LINK

; This routine will swap the 15 bit address in ADDR/ADRFLD with the the
; 15 bit address in LOW/LOWFLD. The AC is always cleared.
SWPADR: CLA ; ...

TAD LOW ; get one value
MQL ; and save it in the MQ
TAD ADDR ; then get the other
DCA LOW ; move it to the other place
MQA ; and get the original one back
DCA ADDR ; it goes in the second location
TAD LOWFLD ; now do the same thing for fields
MQL ; ...
TAD ADRFLD ; ...
DCA LOWFLD ; ...
MQA ; ...
DCA ADRFLD ; ...
.POPJ ; that's all there is to it

.PAGE
� .TITLE Scan a Command Name

; This routine will scan a command or register name for the monitor. Names
; are always alphabetic, may not contain any digits, and are limited to one or
; two letters. The result is stored, in SIXBIT, in location NAME. One letter
; commands are left justified and padded on the right with zeros. If the end
; of line is the next character, then this routine will return with NAME set
; to zero and no error. If, however, there is a least one character out there
; and it is not a letter, then COMERR will be called...
NAMENW: CLA ; be sure the AC is zero

DCA NAME ; and clear the resulting name
.PUSHJ @ZSPACMP ; get the next character, whatever it is
SNA ; is there anything there ??
.POPJ ; no -- just give up now
.PUSHJ ALPHA ; see if it is a letter
SNL ; was it a letter ??
JMP @ZCOMERR ; no -- this isn't legal
TAD ZMSPACE ; yes -- convert it to SIXBIT
BSW ; left justify it
DCA NAME ; and store it in word

; Check for a second letter in the name...
Page 56

BTS6120_Listing
.PUSHJ @ZGET ; get the next character
.PUSHJ ALPHA ; is this a letter ??
SNL ; ???
JMP @ZBACKUP ; no -- put it back and return
TAD ZMSPACE ; yes -- convert it to SIXBIT too
TAD NAME ; put both letters together
DCA NAME ; ...
.POPJ ; then that's all

; This routine will return with the LINK bit set if the AC holds a letter,
; and with the LINK reset if it does not. In either case the AC is not
; disturbed...
ALPHA: STL ; be sure the link starts in a known state

TAD [-"A"] ; compare it to the first letter
SMA ; skip if it isn't a letter
JMP ALPHA1 ; it might be -- look further
TAD ["A"] ; it's not a letter -- restore the AC
.POPJ ; and quit (the link is zero now !!)

; Here if it might be a letter (the link is also zero now)...
ALPHA1: TAD ["A"-"Z"-1] ; now compare it to the other end

SMA ; skip if it is a letter
CML ; it isn't a letter -- set the link to a 0
TAD ["Z"+1] ; restore the character and the link
.POPJ ; then that's all

� .TITLE Command Lookup and Dispatch

; This routine will lookup a command or register name in a table and then
; dispatch to the corresponding routine. The address of the table, should
; be passed in the AC. The table is formatted as two word entries - the first
; word of a pair is the SIXBIT name of the command or register, and the second
; word is the address of the routine to call. As soon as this routine finds a
; first word that matches the value currently in NAME, it will jump to the
; routine indicated by the second word. The table ends with a zero word
; followed by the address of an error routine - the zero word always matches
; the current name and the error routine will be called.
;
; NOTE: Command tables are always stored in field one, however the addresses
; of all the routines they reference are always in field zero!
;
; NOTE: Auto index registers pre-decrement, so the address -1 of the table
; must be passed in the AC!
MATCH: DCA X1 ; save the pointer to the table

CDF 1 ; command tables are stored in field 1

; Search for a name which matches...
MATCH1: TAD @X1 ; pick up the name (from field 1)

SNA ; is this the end of the table ??
JMP MATCH2 ; yes -- this always matches
CIA ; make the word negative
TAD NAME ; and compare it to the desired value
SNA CLA ; ???
JMP MATCH2 ; a match !!
ISZ X1 ; no match -- skip over the address
JMP MATCH1 ; and keep looking

; Here when we find a match...
MATCH2: TAD @X1 ; get the address of the routine

DCA MATCH3 ; put that in a safe place
CDF 0 ; change back to the usual data field
JMP @MATCH3 ; then branch to the right routine

; Temporary storage for MATCH...
MATCH3: .BLOCK 1 ; address of the matching routine
� .TITLE Scan Decimal Numbers

; This routine will read a decimal number from the command line and return
; its value in location WORD. The value is limited to 12 bits and overflows
; are not detected. At least one decimal digit must be found on the command
; line or COMERR will be called, and the first non-digit character found will

Page 57

BTS6120_Listing
; be returned in location SAVCHR.
DECNW: CLA ; ignore the AC initially

DCA WORD ; clear the total
DCA DIGITS ; and the digit counter
.PUSHJ @ZSPACMP ; ignore any leading blanks

; Check for a decimal digit...
DECNW1: TAD [-"0"] ; compare it to zero

SPA ; ???
JMP DECNW2 ; it's not a digit -- quit
TAD [-9.] ; then compare it to the other end
SMA SZA CLA ; ???
JMP DECNW2 ; still not a digit

; Accumulate another decimal digit...
TAD WORD ; get the old total
CLL RAL ; multiply it by two
DCA WORD ; and save that
TAD WORD ; ...
CLL RAL ; then multiply it by 4 more
CLL RAL ; (for a total of 8)
TAD WORD ; because 8x + 2x = 10x
TAD SAVCHR ; then add the new digit
TAD [-"0"] ; and correct for ASCII characters
DCA WORD ; remember that for next time

; Read the next digit and proceed...
ISZ DIGITS ; remember one more digit processed
.PUSHJ @ZGET ; get the next character
JMP DECNW1 ; then keep trying

; Here when we find something which isn't a digit...
DECNW2: CLA ; ...

TAD DIGITS ; get the digit count
SNA CLA ; it has to be at least one
JMP @ZCOMERR ; that's an error if it isn't
.POPJ ; and we're done

� .TITLE Scan Octal Numbers

; This routine will read an octal number from the command line and return
; its value in location WORD. The value is usually limited to twelve bits,
; however any overflow bits will be left in location WORDH. This is intended
; for use by the OCTNF routine to extract the field from a 15 bit address.
; At least one octal digit must be found on the command line or COMERR will be
; called, and the first non-digit character found will be returned in location
; SAVCHR.
OCTNW: CLA ; remove any junk

DCA WORD ; clear the partial total
DCA DIGITS ; we haven't read any digits yet
.PUSHJ @ZSPACMP ; ignore any leading spaces

; Check for an octal digit next...
OCTN1: TAD [-"0"] ; compare it to a zero

SPA ; ???
JMP OCTN2 ; this one isn't a digit
TAD [-7] ; now compare to the high end of the range
SMA SZA CLA ; ???
JMP OCTN2 ; still not a digit

; Now accumulate another digit.
TAD WORD ; get the previous total
DCA WORDH ; and remember that for OCTNF
TAD WORD ; then again
RTL ; shift it left 3 bits
RAL ; ...
AND [7770] ; then insure that no junk has wrapped around
TAD SAVCHR ; add the next digit
TAD [-"0"] ; and correct for ASCII values
DCA WORD ; remember the new total
ISZ DIGITS ; also remember how many digits we read
.PUSHJ @ZGET ; read the next character

Page 58

BTS6120_Listing
JMP OCTN1 ; then go look for more

; Here when we find something which isn't a digit...
OCTN2: CLA ; ...

TAD DIGITS ; see how many digits we've read
SNA CLA ; there must be at least one
JMP @ZCOMERR ; nope -- this isn't legal
.POPJ ; and return that in the AC

.PAGE
� .TITLE Scan 15 Bit Addresses

; This routine will read a 15 bit address from the command. The lower 12
; bits of the address are always left in location WORD, and the upper 3 bits
; will be in location ADRFLD, properly justified. If the user types 5 or more
; digits in the octal address, the lower 12 bits becomes the address, and the
; next 3 most significant bits are the field. If his octal number has 4 or
; fewer digits, the field will be the current data field instead. For example,
; (assume that the current DF is 3):
;
; 1234 --> Location 1234, field 3
; 01234 --> Location 1234, field 0
; 41234 --> Location 1234, field 4
; 5641234 --> Location 1234, field 4
;
; Like the OCTNW routine, this routine will return the low order 12 bits
; in location WORD. There is an alternate entry point at location OCTNI; this
; is identical to OCTNF, except that the instruction field, not the data field,
; provides the default field number...

; Here to read an address in the instruction field...
OCTNI: CLA ; ...

TAD UFLAGS ; use the instruction field as default
AND ZK70 ; ...
JMP OCTNF1 ; then proceed normally

; Here to read an address in the data field...
OCTNF: CLA ; ...

TAD UFLAGS ; use the data field as the default
R3L ; ...
AND ZK70 ; ...

OCTNF1: DCA ADRFLD ; and save the default for later
.PUSHJ @ZOCTNW ; read a normal octal number
CLA ; we don't care about this part
TAD DIGITS ; see how many digits there were
TAD [-5] ; we need at least 5
SPA CLA ; ???
.POPJ ; there weren't that many -- use the default

; Extract the upper 3 bits of the address...
TAD WORDH ; get the high order bits
BSW ; then put the upper 3 bits in the right place
AND ZK70 ; trim it to just the important bits
DCA ADRFLD ; then that is the new data field (temporarily)
.POPJ ; that's all folks

� .TITLE Ask For Confirmation

; This routine will type a question mark and then wait for the operator to
; enter a "Y" (or "y") to confirm. It's used by exceptionally dangerous
; commands, like FORMAT, and normally the caller will type a short string
; (e.g. "Format unit 0" before actually calling this function. If the
; operator does confirm, it will return with the link set. If the operator
; types anything other than "Y" or "y", it will return with the link clear.
; Note that it's also acceptable to just type Control-C to abort!
CONFRM: .PUSHJ @[TQUEST] ; type a question mark
CONF1: .PUSHJ @[INCHRS] ; go get a character of input

SNA ; did we get anything ?
JMP CONF1 ; nope - keep waiting
DCA SAVCHR ; we got a real character - save it
TAD SAVCHR ; and echo it back to the terminal

Page 59

BTS6120_Listing
.PUSHJ @ZOUTCHR ; ...
.PUSHJ @ZCRLF ; followed by a CRLF

; See what his answer was...
TAD SAVCHR ; get the answer once more
TAD [-"Y"] ; is it a "Y"
SNA ; ???
JMP CONF2 ; yes - return with the link set
TAD ["Y"-"y"] ; or a "y"?
SNA ; ???
JMP CONF2 ; yes - same thing
CLA CLL ; nope - return FALSE
.POPJ

; Here if he answered "Y" or "y"...
CONF2: CLA STL ; return TRUE

.POPJ ; ...
� .TITLE Type Special Characters

; This routine will simulate a TAB on the terminal, which it does by typing
; spaces until the horizontal position reaches a multiple of 8 characters.
; Note that this routine will always type at least one space. The AC is
; always cleared by this routine.
TTABC: .PUSHJ TSPACE ; Always type at least one space

TAD HPOS ; Get the current horizontal position
AND ZK7 ; Is it a multiple of 8 ??
SZA CLA ; ???
JMP TTABC ; No -- keep typing
.POPJ ; Yes -- we can stop now

; This routine will type a space on the terminal.
TSPACE: CLA ; Clear the AC

TAD [" "] ; And load a space character
JMP @[THCHAR] ; Then type it and return

; This routine will type a question mark on the terminal.
TQUEST: CLA ; ...

TAD ["?"] ; ...
JMP @[THCHAR] ; ...

; This routine will type a BELL character on the terminal.
TBELL: CLA ; ...

TAD [CHBEL] ; Get a bell character
JMP @[TFCHAR] ; Then type it out

; Type a slash (used as an address separator) on the terminal.
TSLASH: CLA ; ...

TAD ["/"] ; ...
JMP @[THCHAR] ; ...

; Type a dot (used for decimal numbers and disk addresses) on the terminal.
TDOT: CLA ; ...

TAD ["."] ; ...
JMP @[THCHAR] ; ...

; Convert the value in the AC to a decimal digit and type it...
TDIGIT: TAD ["0"] ; make it ASCII

JMP @[THCHAR] ; type it and return
� .TITLE Type Carriage Return, Line Feed and Backspace

; This routine will type a carriage return, line feed pair on the terminal
; and it will correctly update HPOS to show that the cursor is now at the left
; margin. In addition, it will keep count of the number of CRLFs output in
; location VPOS, and when the terminal's screen is full (as indicated by VPOS
; equals LENGTH) it will cause an automatic XOFF. The AC is always cleared
; on return.
CRLF: CLA ; be sure the AC is cleared

TAD [CHCRT] ; get a return character
.PUSHJ @[TFCHAR] ; and type that out
DCA HPOS ; remember that the cursor is in column zero

Page 60

BTS6120_Listing

; Now check the vertical position of the cursor...
ISZ VPOS ; increment the current position
NOP ; ...
TAD LENGTH ; get the size of the screen
SNA ; is it zero ??
JMP CRLF1 ; yes -- never stop
CIA ; no -- make it negative
TAD VPOS ; and compare it to the current location
SPA CLA ; is the screen full ??
JMP CRLF1 ; no -- proceed
DCA VPOS ; yes -- clear the vertical position
.PUSHJ @[TBELL] ; type a bell character
STA ; then load a -1 into the AC
DCA XOFF ; and cause an automatic XOFF

; Type the line feed next...
CRLF1: TAD [CHLFD] ; now get a line feed

JMP @[TFCHAR] ; type that and return

; This routine will type a BACKSPACE character on the terminal and update
; HPOS to show the new cursor position. It will not allow you to backspace
; beyond the left margin of the temrinal. The AC is always cleared on return.
TBACKS: STA ; load the AC with -1

TAD HPOS ; and decrement HPOS
SPA ; are we going to pass the left margin ??
JMP BACKS1 ; yes -- don't type anything
DCA HPOS ; no -- update HPOS
TAD [CHBSP] ; then get a backspace character
.PUSHJ @[TFCHAR] ; and type that out

BACKS1: CLA ; clear the AC
.POPJ ; and that's all

.PAGE
� .TITLE Read Command Lines

; This routine will read a single command line from the user and store the
; text of the line, one character per word and terminated by a null character,
; in the array at CMDBUF. The size of CMDBUF, and therefore the maximum
; length of a command, is given by MAXCMD and is normally a page (128 words).
; An auto-index register, L, is set aside just for the purpose of indexing the
; command buffer and when it returns this routine will always leave L set up
; to point to the beginning of the command.
;
; While it is reading the command, this routine will recognize these control
; characters:
;
; Control-C --> Abort the command
; Control-R --> Retype the current line, including corrections
; Control-U --> Erase the current line and start over again
; DELETE --> Erase the last character (echos the last character typed)
; BACKSPACE --> Erase the last character on a CRT
; Return --> Terminates the current command
; Line Feed --> " " " "
; ESCAPE --> " " " "
;
; When this routine is called, the AC should contain the prompting
; character.
;
INCHWL: DCA PROMPT ; remember the prompt character

TAD [CMDBUF-1] ; point to the line buffer
DCA L ; and initialize the pointer
DCA CMDLEN ; say that this command is zero characters
DCA XOFF ; clear the XOFF and
DCA CTRLO ; control-O flags...
TAD PROMPT ; get the prompting address back again
.PUSHJ @ZOUTCHR ; and type out the character

; Read and process the next character...
INCHW1: .PUSHJ @[INCHRS] ; try to read something from the console

SNA ; did we get anything ??
Page 61

BTS6120_Listing
JMP INCHW1 ; no -- wait for it
DCA SAVCHR ; save this character for a while
DCA XOFF ; then clear the XOFF,
DCA CTRLO ; control-O, and
DCA VPOS ; automatic XOFF flags
TAD SAVCHR ; get the character back
TAD ZMSPACE ; compare this to a space
SPA ; ???
JMP INCHW3 ; this is a control character
TAD [" "-177] ; is this a DELETE character ?
SNA CLA ; ???
JMP INCHW8 ; yes -- go do that

; Here to process a normal character...
INCHW2: TAD CMDLEN ; get the length of this line

TAD [-MAXCMD] ; and compare to the maximum
SMA CLA ; are we already full ??
JMP INCH10 ; yes -- don't store this character
TAD SAVCHR ; get the character back
.PUSHJ @ZOUTCHR ; and echo it to the terminal
TAD SAVCHR ; get the character again
DCA @L ; store it in the line
ISZ CMDLEN ; the command is one character longer now
JMP INCHW1 ; and go get the next one

; Here to handle a control-R command...
INCHW3: TAD [" "-CHCTR] ; is this really a control-R ??

SZA ; ???
JMP INCHW4 ; no -- Proceed
DCA @L ; yes -- close the command buffer
TAD [CHCTR] ; get the control-R character back
.PUSHJ @ZOUTCHR ; and echo that to the terminal
.PUSHJ @ZCRLF ; start a new line
TAD PROMPT ; get the prompt character first
.PUSHJ @ZOUTCHR ; and always type that too
TAD [CMDBUF-1] ; point to the current command
.PUSHJ @[TASCIZ] ; and echo the entire line back
.PUSHJ @ZBACKUP ; backup L over the null we put there
JMP INCHW1 ; finally continue typing

; Here to handle a Control-U character...
INCHW4: TAD [CHCTR-CHCTU] ; is this really a Control-U character ??

SZA ; ???
JMP INCHW5 ; no -- keep trying
TAD [CHCTU] ; yes -- get the character back again
.PUSHJ @ZOUTCHR ; and echo that to the operator
.PUSHJ @ZCRLF ; then start on a new line
JMP INCHWL+1 ; and go start all over again

; Here to handle a BACKSPACE character...
INCHW5: TAD [CHCTU-CHBSP] ; is that what this is ??

SZA ; ???
JMP INCHW6 ; nope, not yet
TAD CMDLEN ; yes -- get the length of this command
SNA CLA ; is it a null line ??
JMP INCHW1 ; yes -- there's nothing to delete
.PUSHJ @[TBACKS] ; yes, type a backspace
.PUSHJ @ZTSPACE ; then type a space
.PUSHJ @[TBACKS] ; and another backspace
JMP INCHW9 ; finally join with the DELETE code

; Here to check for line terminators...
INCHW6: TAD [CHBSP-CHCRT] ; is this a return ??

SNA ; ???
JMP INCHW7 ; yes -- this line is done
TAD [CHCRT-CHLFD] ; no -- Is it a line feed then ?
SNA ; ???
JMP INCHW7 ; yes -- That's just as good
TAD [CHLFD-CHESC] ; no -- How about an escape ?
SZA CLA ; ???
JMP INCHW2 ; no -- just store this control character

Page 62

BTS6120_Listing
; Here to finish a command...

TAD [CHESC] ; get the ESCAPE code back
.PUSHJ @ZOUTCHR ; and echo that to the terminal

INCHW7: .PUSHJ @ZCRLF ; then close the input line
DCA @L ; end the command with a null byte
TAD [CMDBUF-1] ; and then backup the pointer
DCA L ; to the start of the command
.POPJ ; that's all there is to it

; Here to process a DELETE character...
INCHW8: TAD CMDLEN ; get the command length

SNA CLA ; is this a null command ??
JMP INCHW1 ; yes -- there's nothing to delete
.PUSHJ @ZBACKUP ; decrement the line pointer
TAD @L ; get the last character stored
.PUSHJ @ZOUTCHR ; and echo that for the DELETE

; Now delete the last character typed...
INCHW9: .PUSHJ @ZBACKUP ; decrement the line pointer

STA ; then fix the command length too
TAD CMDLEN ; ...
DCA CMDLEN ; ...
JMP INCHW1 ; finally go get the next character

; Here if the command line is full -- echo a bell instead...
INCH10: .PUSHJ @[TBELL] ; go type a bell character

JMP INCHW1 ; then go wait for something to do

; Local storage for INCHWL...
CMDLEN: .BLOCK 1 ; the length of the current line
PROMPT: .BLOCK 1 ; the prompting character

.PAGE
� .TITLE Terminal Output Primitives

; This routine will type the character in the AC on on the terminal. If the
; character is a printing character, it will be typed normally. If this
; character is happens to be a DELETE or NULL code (ASCII codes 00 and 7F),
; it will be ignored. If the character is a TAB, it is simulated by calling
; the TTABC routine. Finally, if it is any other control character, it is
; converted to the familiar ^x representation (unless it is an ESCAPE code,
; which, by tradition, is typed as $). This routine cannot be used to type
; carriage returns, line feeds, bells, or other control characters that are
; to be output literally. The AC is always cleared on return.
OUTCHR: SNA ; first see if this character is a null

.POPJ ; just drop it if it is
TAD ZMSPACE ; see if this is a control character
SMA ; skip if it is a control code
JMP OUTCH3 ; just type a normal character

; Here to type a TAB character...
TAD [" "-CHTAB] ; is this really a TAB character at all ??
SZA ; ???
JMP OUTCH1 ; no -- check further
JMP @[TTABC] ; yes -- type a TAB and return

; Here to print an ESCAPE character...
OUTCH1: TAD [CHTAB-CHESC] ; is this an ESCAPE character ??

SZA ; ???
JMP OUTCH2 ; no -- go type the ^x form instead
TAD ["$"] ; yes -- type a dollar sign for an ESCAPE
JMP THCHAR ; then type it and return

; Here to print a control character...
OUTCH2: .PUSH ; save the character for a while

CLA ; and get the flag character
TAD ["^"] ; ...
.PUSHJ TFCHAR ; type that first
.POP ; then get the character back
TAD [CHESC+"@"] ; convert it to a printing character
JMP THCHAR ; type that and return

Page 63

BTS6120_Listing

; Here to print a normal character...
OUTCH3: TAD [" "] ; restore the original character

; and fall into THCHAR

; This routine will type a printing character and, while doing this, it will
; keep track of the horizontal position of the cursor. If it passes the line
; length of the terminal, a free carriage return is also typed. The terminal's
; horizontal position (HPOS) is also used for the tab simulation. The
; character to be typed should be in the AC, the AC will be cleared on return.
THCHAR: .PUSH ; save the character for a while

ISZ HPOS ; and incrment the horizontal position
CLA ; get the maximum width allowed
TAD WIDTH ; ...
SNA ; is it zero ??
JMP THCHA1 ; yes -- no automatic carriage returns, then
CMA CIA ; make it negative
TAD HPOS ; and compare to the terminal cursor position
SPA CLA ; have we reached the end of the line ??
JMP THCHA1 ; no -- proceed normally
.PUSHJ @ZCRLF ; yes -- force a carriage return first

THCHA1: .POP ; then get the character back
; and fall into TFCHAR

; This routine will type a single character from the AC on the terminal.
; Before it types the character, this routine will check the state of the
; CNTRLO and XOFF flags. If a Control-O has been typed, the character is
; discarded and not typed on the terminal. If an XOFF has been typed, the
; output will be suspended until the user types an XON character (or a
; Control-O or Control-C).
TFCHAR: .PUSH ; save the character for a while
TFCHA1: .PUSHJ INCHRS ; check the operator for input

CLA ; we don't care if anything was typed
TAD CTRLO ; get the Control-O flag byte
SZA CLA ; is it zero ??
JMP TFCHA2 ; no -- just throw this character away
TAD XOFF ; now test the XOFF flag
SZA CLA ; is the output suspended ??
JMP TFCHA1 ; wait for something to happen if we are XOFFed

; Here when it is OK to type the character...
.POP ; get the character back
JMP CONOUT ; and send it to the UART

; Here to return without typing anything...
TFCHA2: .POP ; clean up the stack

CLA ; but always return zero
.POPJ ; and just quit

; This routine will output a character from the AC to the terminal, with no
; no special processing of any kind. It simply waits for the console flag to
; set and then send the character. However, If the flag does not set in a
; reasonable amount of time then this routine will force the character out
; anyway. This prevents the monitor from hanging if the terminal flag is
; cleared by the user's program.
;
; The timeout loop requires 26 minor cycles which, with a 4.9152Mhz clock,
; takes 10.5 microseconds. If we simply clear the timeout counter when we
; start we'll get a timeout after 4096 counts, or about 43 milliseconds.
; If we assume that 300 baud is the slowest console we'll ever use, then
; that's just about right (at 300 baud a character takes about 33 milliseconds
; to transmit!).
;
CONOUT: DCA CONCHR ; remember the character to send

DCA IRMA ; and clear the timeout timer

; See if the flag is set and send the character if so...
CONOU1: TSF ; [9] is the flag set ???

JMP CONOU3 ; [4] no -- go check the timeout
CONOU2: TAD CONCHR ; yes -- get the character

Page 64

BTS6120_Listing
TLS ; and send it to the console
CLA ; a _real_ TLS doesn't clear the AC!!
.POPJ ; ...

; Here if the flag is not yet set...
CONOU3: ISZ IRMA ; [9] have we waited long enough ???

JMP CONOU1 ; [4] no -- wait a little longer
JMP CONOU2 ; yes -- force the character out anyway

; Temporary storage for the CONOUT routine...
CONCHR: .BLOCK 1 ; a place to save the console character
� .TITLE Terminal Input Primitives

; This routine is called to check for operator input. It will test to see
; if the operator has typed a character. If he has not, this routine returns
; with the AC cleared and nothing else happens. If he has, this routine checks
; to see if the character is one of Control-C, Control-O, Control-S or
; Control-Q because these characters have special meaning and are acted upon
; immediately. If the input character is anything else, the character is
; returned in the AC.
INCHRS: .PUSHJ CONIN ; try to read a character from the terminal

AND ZK177 ; ignore the parity bit here
SNA ; is this a null character ??
.POPJ ; yes -- just ignore it

; Here process a control-C character -- restart the monitor...
TAD [-CHCTC] ; is this really a control-C ??
SZA ; ???
JMP INCHR1 ; no -- proceed
DCA CTRLO ; yes -- clear the control-O
DCA XOFF ; and XOFF flags
TAD [CHCTC] ; get another control-C character
.PUSHJ @ZOUTCHR ; echo it to the terminal
JMP @ZRESTA ; and go restart the monitor

; Here to check for a control-O character...
INCHR1: TAD [CHCTC-CHCTO] ; compare to a control-O character

SZA ; is this it ??
JMP INCHR2 ; no -- keep checking
DCA XOFF ; control-O always clears the XOFF flag
TAD [CHCTO] ; get another control-O character
.PUSHJ @ZOUTCHR ; and echo that
.PUSHJ @ZCRLF ; then close the line
TAD CTRLO ; get the current state of the control-O flag
CMA ; and complement it
DCA CTRLO ; that's the new value
.POPJ ; return with the AC cleared

; Here to check for a control-S character...
INCHR2: TAD [CHCTO-CHXOF] ; is this a control-S ??

SZA ; ???
JMP INCHR3 ; nope, try again
STA ; yes -- get a -1 into the AC
DCA XOFF ; and set the XOFF flag
.POPJ ; return with the AC cleared

; Here to check for a control-Q character...
INCHR3: TAD [CHXOF-CHXON] ; is this a control-Q ??

SZA ; ???
JMP INCHR4 ; no -- just give up
DCA XOFF ; yes -- clear the XOFF flag
DCA VPOS ; also clear the automatic XOFF counter
.POPJ ; return with the AC cleared

; Here if the character is nothing special...
INCHR4: TAD [CHXON] ; restore the state of the AC

.POPJ ; and return the character in the AC

; This routine will read a single character from the console UART. If no
; character is currently ready, it will return a null (zero) byte in the AC,

Page 65

BTS6120_Listing
; but otherwise the character read is left in the AC...
CONIN: CLA ; be sure the AC is cleared

KSF ; is a character ready ??
.POPJ ; no -- just return zero
KRB ; yes -- read it into the AC
.POPJ ; then return that in the AC

.PAGE
� .TITLE Control Panel Entry Points

.ORG 7600

; There's a little bit of chicanery that goes on here (when have you seen
; a PDP-8 program without that???). After a power on clear or a hard reset,
; the HM6120 starts executing at location 7777 of panel memory which, in
; the case of the SBC6120, is part of the EPROM. The EPROM code at this
; location always jumps to the system initialization routine without even
; trying to figure out why we entered panel mode.
;
; The system initialization code copies all of the EPROM contents to panel
; RAM and then disables the EPROM forever. After that it actually changes
; the vector at location 7777 to point to the CPSAVE routine, which is the
; normal panel entry point for traps, halts, etc.

.VECTOR CPBOOT ; set the 6120 start up vector at 7777
CPBOOT: CXF 1 ; the startup code lives in field 1

JMP @[SYSINI] ; and away we go!

; Excluding a hardware reset, the 6120 will enter control panel mode for any
; of three other reasons:
;
; * any of the PR0..PR3 instructions were executed in main memory
; * the CPU was halted, either by a HLT instruction or by the RUN/HLT input
; * a panel interrupt was requested by the CPREQ pin
;
; In all the these cases, the 6120 was presumably executing some important
; program in main memory before it was interrupted, and we need to save the
; state of that program before doing anything else. When the 6120 enters
; panel mode it saves the last main memory PC in panel memory location 0 and
; then starts executing instructions in panel memory at 7777. The remainder of
; the main memory context (e.g. AC, MQ, flags, etc) we have to save manually.
CPSAVE: DCA UAC ; save the AC

GCF ; and the flags (including LINK, IF and DF)
DCA UFLAGS ; ...
MQA ; the MQ
DCA UMQ ; ...
RSP1 ; 6120 stack pointer #1
DCA USP1 ; ...
RSP2 ; " " " #2
DCA USP2 ; ..

; Now set up enough context so that this monitor can run. The CONT routine
; has saved in location STKSAV our last stack pointer before the main memory
; program was started and, if we're single stepping the main memory program,
; we're going to need that so that we can continue what we were doing. In
; the case of other traps the RESTA routine gets called which will reset the
; stack pointer.

TAD STKSAV ; get the monitor's last known stack pointer
LSP1 ; and restore that
CXF 0 ; set both DF and IF to field zero
SPD ; make indirect cycles access panel memory
DCA VPOS ; reset the automatic XOFF line counter
POST+1 ; show post code #1

; Finally, we can determine the exact reason for entry into panel mode by
; reading the panel status flags with the PRS instruction, and that will tell
; us where to go next. Be careful, though, because executing PRS clears the
; flags so we only get to do it once! This code kind of assumes that only one
; of these flags can be set at any time - I believe that's true for the 6120.

PRS ; get the reason for panel entry
RAL ; check the BTSTRP flag first
SZL ; ... this is set by an external CPREQ

Page 66

BTS6120_Listing
JMP BTSTRP ; yes
RAL ; the next flag is PNLTRP
SZL ; ... which is set by the PRn instructions
JMP PNLTRP ; ...
RTL ; next is PWRON (it skips a bit!)
SZL ; ... which is only set by a hard reset
JMP PWRON ; ...
RAL ; and lastly is the HLTFLG
SZL ; ... which is set any time the CPU halts
JMP HALTED ; ...

; If we get here, none of the known panel status bits are set. I don't
; know what this means, but it can't be good! We also jump here if the
; PWRON status bit is set. Since this bit can only be set by a hardware
; reset, and since in the SBC6120 this automatically maps EPROM instead
; of RAM, we should never see this happen.
PWRON: JMS TRAP ; print a generic

TRPMSG ; "% UNKNOWN TRAP AT ..." message

; The BTSTRP flag indicates a transition of the CPREQ line. In the
; SBC6120 this is conected to the console UART framing error output, so
; entering a BREAK on the terminal causes a console trap. In other hardware
; this might also be used to trap various IOT instructions and emulate them,
; but not in the SBC6120...
BTSTRP: JMS TRAP ; print

BRKMSG ; "% BREAK AT ..." and restart

; The PNLTRP flag indicates that one of the PR0 thru PR3 instructions has
; been executed, but unfortunately the only way to find out which is to
; use the last main memory PC to fetch the instruction from memory. Remember
; that the 6120 will have already incremented the PC by the time we get here,
; so it's actually one _more_ than the location we want. Currently the PR3
; instruction is used as a breakpoint trap and PR0 is a generic ROM "monitor
; call". The other two, PR1 and PR2, are unused.
PNLTRP: STA ; decrement the PC

TAD UPC ; so it points at the actual instruction
DCA UPC ; that caused the trap
TAD UFLAGS ; get the IF at the time of the trap
AND ZK70 ; ...
TAD PNLCDF ; make a CDF instruction out of that
DCA .+1 ; and execute it
NOP ; ... gets overwritten with a CDF ...
CPD ; address main memory with indirect cycles
TAD @UPC ; get the opcode that caused the trap
DCA UIR ; and save it for later
SPD ; back to panel memory

PNLCDF: CDF 0 ; always field zero

; See which instruction it was...
TAD UIR ; get the opcode
TAD [-BPT] ; is it PR3 ??
SNA ; ???
JMP BPTTRP ; yes - handle a break point trap
TAD [BPT-PR0] ; no - is it PR0?
CXF 1 ; (the ROM call handler lives in field 1)
SNA ; ???
JMP @[MCALL] ; yes - handle a monitor call
CXF 0 ; ...
JMS TRAP ; for any others just print a generic
PRNMSG ; "% PANEL TRAP AT ..." message

; Here for a breakpoint trap...
BPTTRP: JMS TRAP ; print

BPTMSG ; "% BREAKPOINT AT ..." and proceed

; Here (from field 1) for an illegal PR0 call...
ILLPR0: JMS TRAP ; say

PR0MSG ; "? ILLEGAL PR0 FUNCTION AT ..."

; We get here when the 6120 halts, but unfortunately there are no less than
; three different reasons why it night have done this. The first is that the
; main memory program has executed a HLT (7402, or any microcoded combination

Page 67

BTS6120_Listing
; there of) instruction. Or, it could be that the 6120 was halted externally
; by a transition on the HLTREQ input pin, however the SBC6120 has no hardware
; to do this. Lastly, it could be that the HALT flag was already set when
; we restarted the main memory program - in this case the 6120 will execute
; one instruction and trap back here.
;
; We use this situation intentionally to single step main memory programs,
; and we can tell when this happens by checking the SIMFLG flag in memory.
; This flag is normally cleared, but will be set by the SINGLE routine when we
; want to single step. In that case the monitor's stack is valid (it was
; saved to STKSAV by the CONT routine before switching context) and all we
; have to do is execute a .POPJ to return to the routine that originally
; called SINGLE. Keep your fingers crossed.
HALTED: CLA ; ...

TAD SIMFLG ; did we execute a single instruction?
SZA CLA ; ???
.POPJ ; yes - return from the SINGLE routine now!
JMS TRAP ; otherwise just say
HLTMSG ; "% HALTED AT ..." and restart

; This routine does most of the generic work of handling traps to panel
; memory. It prints a message, which is passed inline via a JMS instruction,
; prints the PC, removes any breakpoints from the program and then restarts
; the monitor...
TRAP: 0 ; call here with a JMS instruction

.PUSHJ @ZCRLF ; be sure we start on a new line
TAD @TRAP ; get the address of the message
.PUSHJ @[OUTSTR] ; and print that
TAD UFLAGS ; then get the field of the trap
AND ZK70 ; ...
.PUSHJ @[TFIELD] ; and type that
TAD UPC ; then the PC too
.PUSHJ @ZTOCT4C ; type that and a CRLF
.PUSHJ @[REGLSC] ; type the registers on the next line
.PUSHJ @[BPTRMV] ; remove any breakpoints
JMP @ZRESTA ; and restart the monitor

.FIELD 1
� .TITLE Field 1 Variables

; This page defines all the page zero variables used by the code in field
; one. The system initialization code, part 1, at SYSINI: also lives in page
; zero of field one, and then is overwritten by these variables after init-
; ialization is completed. As a consequence, none of these variables can
; have initial values the way their field zero counter parts do!

.ORG 0000

; Auto index registers...
.ORG 0010

RAMPTR: .BLOCK 1 ; address, within the RAM disk, for I/O
BUFPTR: .BLOCK 1 ; address of the caller's buffer for I/O
XX1: .BLOCK 1 ; generic auto index register for field 1
XX2: .BLOCK 1 ; " " " " " "

.ORG 0020

; RAM Disk I/O routine storage...
RDUNIT: .BLOCK 1 ; currently selected RAM disk unit for I/O
RDPAGE: .BLOCK 1 ; " " " " " " page number
RAMBUF: .BLOCK 3 ; a three byte "mini buffer" for 3 <-> 2 packing
RAMDAR: .BLOCK 1 ; RAM disk address register (written to LDAR)
BATTOK: .BLOCK 1 ; -1 if RAM backup battery is good
RDSIZE: .BLOCK 4 ; size of each RAM disk unit, in KB, or 0 if none
RAMSIZ: .BLOCK 1 ; total size of all RAM disks, in KB
SIZPTR: .BLOCK 1 ; pointer to the RDSIZE array
RAMUSZ: .BLOCK 1 ; - size of selected RAM disk chip

; IDE Disk I/O routine storage...
DKPART: .BLOCK 1 ; 12 bit disk partition number
DKRBN: .BLOCK 1 ; 12 bit sector relative block number

Page 68

BTS6120_Listing
DKSIZE: .BLOCK 1 ; size of attached drive, in MB, or 0 if no drive
DKUNIT: .BLOCK 1 ; logical unit (partition) number for OS/8
PARMAP: .BLOCk 10 ; unit number to partition map for eight OS/8 units

; ROM call arguments
MUUO: .BLOCK 1 ; ROM MCALL function code
ARGPTR: .BLOCK 1 ; pointer to MCALL (PR0) argument list
XFRCNT: .BLOCK 1 ; word count for I/O
BUFPNL: .BLOCK 1 ; -1 if the user buffer is in panel memory
BUFSIZ: .BLOCK 1 ; actual buffer size for RDIBUF/WRIBUF
RWCNT: .BLOCK 1 ; number of pages to be transferred

.PAGE
� .TITLE ROM Calls (PR0 Instructions)

.ORG 0200

; The PDP2HEX program (which converts BIN files into ROM images in Intel
; HEX format) stores a checksum of ROM field 1 in location 10200. This is
; used by the POST and the VE (version) command.
ROMCK1: .BLOCK 1

; This routine is called by CPSAVE when it detects a panel entry caused by
; a PR0 instruction. Main memory programs can use this instruction to
; communicate with the ROM firmware and, in particular, the OS/8 device driver
; for the RAM disk uses PR0 to transfer data. At this point all of the main
; memory program's registers have been saved and our original monitor stack
; has been restored. The data and instruction field are both one and the
; 6120 panel data flag is set (so indirect references go to panel memory).
; That's about all we can depend on.
;
; There are a couple of subtle points to watch out for here. One simple
; one is that, to save time, break points are not removed from the caller's
; program while we interpret a PR0. That means we have to be sure and return
; to main memory by jumping to CONT1, not CONT, since the latter will attempt
; to reinstall breakpoints _again_ and forever loose the original contents
; of those locations.
;
; The other thing to remember is that CONT and CPSAVE conspire to preserve
; the monitor's stack, so that it can return to the correct place while single
; stepping. That means we want to be sure and JMP to CONT1, not .PUSHJ to it,
; because otherwise it'll just return back to us the next time we enter panel
; mode!
;
; The convention is that the first word after PR0 is a function code to
; select the firmware routine. This routine also preserves the contents of
; the AC both ways - that is, whatever was in the user's AC when the PR0 was
; executed will be in the AC when our monitor call function is invoked, and
; whatever our monitor call function returns in the AC will be placed in the
; user's AC when control returns from the PR0. Anything more than that is up
; to the specific function invoked.

; Get the first agument (the function code) and use it to determine the
; address of a ROM routine to handle it...
MCALL: .PUSHJ GETARG ; CPSAVE leaves the PC pointing at the PR0

; so do a dummy GETARG to skip it
.PUSHJ GETARG ; then get a real PR0 argument from main memory
DCA MUUO ; this is always the function code
TAD MUUO ; see if it's in range
CLL ; be sure the link is in a known state
TAD [-MAXFUN-1] ; check against the maximum function
SZL CLA ; if it's legal, skip
JMP MCALL2 ; nope - go print an error message...
TAD MUUO ; it's legal - use it
TAD [FUNTBL] ; index into the function dispatch table
DCA MUUO ; ...
TAD @MUUO ; get the address of the function routine
DCA MUUO ; finally - that's what we wanted to know!

; Invoke the monitor routine, preserving the AC in both directions. In
; addition, the LINK bit is commonly used as an error flag (i.e. the LINK
; set on return indicates an error), so it is preserved on return only.

Page 69

BTS6120_Listing
CDF 0 ; the user's context lives in field 0
TAD @[UAC] ; get the user's AC
CDF 1 ; all ROM call routines live in field 1
.PUSHJ @MUUO ; call routine to execute the ROM call

MCALL1: CDF 0 ; address the user's context again
DCA @[UAC] ; return whatever's in the AC
RAR ; put the link bit in AC0
DCA MUUO ; save it for a minute
NL3777 ; then mask off the LINK bit
AND @[UFLAGS] ; in the user's flags
TAD MUUO ; and put ours in there instead
DCA @[UFLAGS] ; ...
CXF 0 ; CONT1 lives in field 1
JMP @[CONT1] ; and then return to main memory

; Here when an illegal PR0 function is invoked.
MCALL2: CXF 0 ; say

JMP @[ILLPR0] ; "?Illegal PR0 function at ..."
� .TITLE Fetch PR0 Arguments

; This routine fetches an argument for PR0 from the main memory program.
; Since arguments are always stored in line after the PR0, the next argument
; is in the instruction field and pointed to by the last main memory PC.
; After the argument is fetched the main memory PC is always incremented so
; that we'll skip over the argument when we return - you have to be careful
; about this, since it means this routine can only be called ONCE to fetch
; any given argument! The PR0 argument is returned in the AC.
GETARG: CLA ; just in case

CDF 0 ; BEWARE - UFLAGS and UPC are both in field 0!
TAD @[UPC] ; get the user's PC from field 0
DCA ARGPTR ; save it in field 1 for a moment
ISZ @[UPC] ; and increment it to skip over the argument
NOP ; this really shouldn't ever happen!
TAD @[UFLAGS] ; get the last known user (main memory) flags
AND [70] ; then get the IF at the time of the trap
TAD [CDF 0] ; make a CDF instruction
DCA .+1 ; change to the correct field
NOP ; ... gets overwritten with a CDF ...
CPD ; always fetch from main memory
TAD @ARGPTR ; get the next word from user program space
SPD ; back to panel memory
CDF 1 ; and back to our field
.POPJ ; return the PR0 argument in the AC

� .TITLE ROM Call Table

; This is what you've really been waiting for - the table of ROM firmware
; function codes and routine addresses.
FUNTBL: GETVER ; 0 - get ROM version

RAMDRW ; 1 - read/write RAM disk
GETRDS ; 2 - return RAM disk size
GETBAT ; 3 - return RAM disk battery status
DISKRW ; 4 - read/write IDE disk
GETDKS ; 5 - return IDE disk size
SETPMP ; 6 - set disk partition mapping
GETPMP ; 7 - get disk partition mapping
MEMMOV ; 10 - copy memory

MAXFUN=.-FUNTBL-1

; PR0 function zero returns the current firmware version in the AC...
GETVER: CLA CLL ; ...

TAD [VERSION] ; get our version number
.POPJ ; MCALL will store it in the caller's AC

�
.TITLE Return from Routines in Field 1

; This routine is the other half of the code at PUSHJ1:, and it allows
; routines in field one which were called from field zero to return to
; field zero. It only needs to do two instructions, but those instructions

Page 70

BTS6120_Listing
; have to be somewhere in field one!
POPJ1: CXF 0 ; return to field zero

.POPJ ; the address is already on the stack
� .TITLE RAM Disk support

; The SBC6120 contains a DS1221 SRAM controller with Li battery backup and
; sockets for up to four byte wide SRAM chips. Each socket can contain either
; a HM628512 512Kx8 SRAM or a HM628128 128Kx8 SRAM or, of course, nothing.
; Additionally, the last socket has two jumpers which permit a 512K byte
; CMOS EPROM to be used if desired. The maximum capacity of the RAM disk
; array is thus 2Mb - a pretty respectable sized disk (almost as big as a
; RK05J!) for OS/8.
;
; The SBC6120 maps these RAM chips into panel memory via the memory decode
; GAL and, when memory map 3 (MM3) is enabled, all indirect references to panel
; memory will access the RAM disk array. Since the RAM disk is only a byte
; wide, write operations discard the upper four bits of a twelve bit word, and
; when reading these bits are undefined and should be masked off by the
; software.
;
; Addressing the RAM disk is a little tricky, since a 2Mb memory requires
; a total of 21 address bits - quite a bit more than a PDP-8 can manage.
; RAM disk address bits 0..11 (the low order bits, contrary to the PDP-8
; convention) are supplied by the HM6120 MA11-0. The remaining 7 bits needed
; by each 512K SRAM come from a special register, the Disk Address Register,
; which can be loaded via the LDAR IOT. The final two bits needed by the
; DS1221 to select one of the four SRAM chips come from DF0 and DF1 (DF2 is
; not used at the moment).
;
; Put more simply, the DF selects the SRAM chip used, the DAR selects the
; 4K byte "bank" within the chip, and the normal memory address selects the
; individual byte within the bank.
;
; For the purposes of writing an OS/8 device handler, each 4K RAM disk bank
; contains 21 pages of 128 twelve bit words, packed using the standard OS/8
; "three for two" scheme. A 512K SRAM chip can hold 128 of these banks,
; corresponding to DAR addresses 0..127, for a total capacity of 2688 PDP-8
; pages or 1344 OS/8 blocks. A 128K SRAM would contain only 32 banks, for a
; total of 672 PDP-8 pages or 336 OS/8 blocks.
;
; Sixty-four bytes are wasted in each bank by this packing scheme, which
; works out to about 21 OS/8 blocks lost in a 512K SRAM. More clever software
; could reclaim these, but it would require that the three-for-two packing
; algorithm split PDP-8 pages across RAM disk banks.
;
; The SRAMs are optional, and this SBC6120 may have all, only some, or even
; none installed. Since each SRAM chip is treated as a separate OS/8 unit,
; this makes it easy to handle the situation where some chips are not missing -
; these units are simply "off line".

; RAM disk "geometry" constants...
RAM512=2688. ; size of a 512K RAM disk, in pages
RAM128=672. ; " " " 128K " " " "
BANKSZ=21. ; pages per bank of RAM disk memory

; Special IOTs for the RAM disk hardware...
LDAR=6410 ; Load RAM disk address register
� .TITLE RAM Disk Read/Write ROM Call

; The calling sequence for the PR0 RAM disk R/W function is:
;
; PR0
; 0001 / panel function code for RAMDISK I/O
; <arg1> / R/W bit, page count, buffer field and unit
; <arg2> / buffer address
; <arg3> / starting page number (not block number!)
; <return> / AC == 0 if success; AC != 0 if error
;
; The error codes currently returned by RAMDRW are:
;

Page 71

BTS6120_Listing
; 0001 - unit > 3 or SRAM chip not installed
; 0002 - page number > 2688
;
; If this looks a lot like an OS/8 handler call, that's no accident!
RAMDRW: .PUSHJ @[SETBUF] ; set up MUUO, BUFPTR, BUFCDF and RWCNT

.PUSHJ GETARG ; and lastly get the disk page number
DCA RDPAGE ; ...

; Select (after first ensuring that it exists!) the correct unit...
TAD MUUO ; next get the unit number
AND [7] ; ...
DCA RDUNIT ; ...
.PUSHJ @[RAMSEL] ; setup RAMCDF to select the correct "unit"
SZL CLA ; was the unit number illegal ?
JMP @[RAMER1] ; yes - give the error return

; This loop reads or writes pages 'till we've done all we're supposed to...
RDRW1: .PUSHJ @[SETDAR] ; calculate the RAM disk address and bank

SZL CLA ; was the page number valid?
JMP @[RAMER2] ; nope - give the bad page error return
TAD MUUO ; get the function code again
SMA CLA ; should we read (0) or write (1) ?
JMP RDRW2 ; ... read
.PUSHJ @[PACK] ; transfer a page from memory to RAM disk
JMP RDRW3 ; and continue

RDRW2: .PUSHJ @[UNPACK] ; transfer a page from RAM disk to memory
RDRW3: ISZ RDPAGE ; if we need more, continue on the next page

ISZ RWCNT ; have we done enough pages?
JMP RDRW1 ; nope - keep going
CLA ; all done with the RAMDRW call
.POPJ ; return status code zero (no error)

� .TITLE RAM Disk Primary Bootstrap

; This routine will read page zero from RAM disk unit zero into page
; zero of field zero of main memory. The next step in the usual boot
; sequence would be to start the secondary bootstrap, but that's up to
; the caller...
RDBOOT: STA ; point the buffer to page 0

DCA BUFPTR ; ...
TAD [CDF 0] ; of field zero
DCA @[BUFCDF+1] ; ...
DCA BUFPNL ; of main memory
DCA RDUNIT ; read RAM disk unit zero
DCA RDPAGE ; page zero
JMP @[RAMDRD] ; ...

.PAGE
� .TITLE Read and Write RAM Disk Pages

; This routine will read a single page from RAM disk to a buffer in memory.
; The caller must set up RDUNIT and RDPAGE with the desired RAM disk unit
; and page, and BUFPTR, BUFCDF and BUFPNL with the address of a 128 word
; buffer in 6120 memory. If any errors are encountered, this routine will
; return with the LINK set and an error status in the AC.
RAMDRD: .PUSHJ @[RAMSEL] ; select the unit in RDUNIT

SZL ; was it invalid??
JMP RAMER1 ; yes - return error code 1
.PUSHJ @[SETDAR] ; calculate the necessary disk address
SZL ; is the page number invalid?
JMP RAMER2 ; yes - return error code 2
JMP @[UNPACK] ; unpack RAM disk data to the buffer and return

; This routine will write a single page from 6120 memory to RAM disk. Except
; for the direction of data flow, it's identical to RAMDRD, including all the
; parameters and error returns.
RAMDWR: .PUSHJ @[RAMSEL] ; select the unit

SZL ; was it invalid??
JMP RAMER1 ; yes - return error code 1
.PUSHJ @[SETDAR] ; calculate the disk address

Page 72

BTS6120_Listing
SZL ; invalid page number??
JMP RAMER2 ; yes - return error code 2
JMP @[PACK] ; pack buffer data into the RAM disk and return

; Here if the unit number is invalid...
RAMER1: CLA CLL CML IAC ; return LINK = 1 and AC = 1

.POPJ ; ...

; Here if the page number is invalid...
RAMER2: NL0002 ; return AC = 2

STL ; and LINK = 1
.POPJ ; ...

� .TITLE Unpack RAM Disk Pages

; This routine will read one page (aka a sector) of 128 PDP-8 words from
; the RAM disk to a buffer anywhere in main memory or panel memory. The
; address of the disk page read is selected by the RAMCDF and RAMPTR locations
; and the DAR register, which should be set up by prior calls to the RAMUNI
; and SETDAR routines. The address of the buffer written is selected by the
; BUFPTR, BUFCDF and BUFPNL locations, which must be set up by the caller
; before invoking this routine. Exactly 128 words are always transferred,
; without fail!
UNPACK: CLA ; ...

TAD [-64.] ; one page is 128 words, or 64 word pairs
DCA XFRCNT ; ...

; Fetch the next three bytes (two words) from the SRAM chip. Note that
; the SRAMs are only eight bits wide, so we'll read indeterminate garbage for
; the upper four bits of each word. Those have to be masked off on the first
; two bytes, but for the third one it doesn't matter - it gets masked to two
; four bit pieces later anyway...
UNPAC1: JMS @[RAMCDF] ; change the DF to the RAM disk unit

MM3 ; and enable the RAM disk chips
TAD @RAMPTR ; fetch three bytes from RAM disk
AND [377] ; eight bits only, please
DCA RAMBUF ; ...
TAD @RAMPTR ; ...
AND [377] ; ...
DCA RAMBUF+1 ; ...
TAD @RAMPTR ; ...
DCA RAMBUF+2 ; ...
MM2 ; restore the default memory map
CDF 1 ; and field

; Pack the three bytes into two words and store them in main/panel memory...
JMS @[BUFCDF] ; change DF to the buffer field
TAD RAMBUF+2 ; the upper 4 bits of the first word are here
BSW ; shift them left six
CLL RTL ; ... then eight bits
AND [7400] ; and isolate just those four bits
TAD RAMBUF ; assemble the first word
DCA @BUFPTR ; and store it in main memory
TAD RAMBUF+2 ; now do the upper 4 bits of the second word
CLL RTL ; shift them left two
CLL RTL ; ... then four bits
AND [7400] ; and isolate just those four bits
TAD RAMBUF+1 ; reassemble the second word
DCA @BUFPTR ; store that in main memory too
SPD ; return to panel memory
CDF 1 ; and our own memory field
ISZ XFRCNT ; have we done a full page?
JMP UNPAC1 ; nope - keep copying
CLL ; be sure the LINK is cleared for success
.POPJ ; yes - we're outta here!

� .TITLE Pack RAM Disk Pages

; This routine will write one page of 128 PDP-8 words from a buffer anywhere
; in either panel or main memory to RAM disk. It's the exact complement of
; UNPACK, and expects exactly the same things to be set up.

Page 73

BTS6120_Listing
PACK: CLA ; don't assume anything!

TAD [-64.] ; do 64 word pairs, or 128 words
DCA XFRCNT ; ...

; Grab the next two twelve bit words from the buffer...
PACK1: JMS @[BUFCDF] ; change DF to the buffer's field

TAD @BUFPTR ; get a word from the buffer
DCA RAMBUF ; save it for the computation of byte 3
TAD @BUFPTR ; do the same with the second word
DCA RAMBUF+1 ; ...
SPD ; back to panel memory addressing

; Store bytes 1 and 2 (they're easy) and calculate byte three. Note that
; the SRAM will ignore the upper four bits when writing (there's no hardware
; there!) so there's no need to worry about masking them out first...

JMS @[RAMCDF] ; select the correct SRAM "unit"
MM3 ; and enable the SRAM chips
TAD RAMBUF ; store byte 1
DCA @RAMPTR ; ...
TAD RAMBUF+1 ; and byte 2
DCA @RAMPTR ; ...
TAD RAMBUF ; byte 3 has the top four bits of word 1
AND [7400] ; ...
BSW ; ... in bits 8..11 of the byte
CLL RTR ; ...
DCA RAMBUF ; save that for a moment
TAD RAMBUF+1 ; and the top four bits of word 2
AND [7400] ; ...
CLL RTR ; in bits 4..7
CLL RTR ; ...
TAD RAMBUF ; ...
DCA @RAMPTR ; ...
MM2 ; return to the default memory map
CDF 1 ; and field
ISZ XFRCNT ; have we done a whole page?
JMP PACK1 ; nope - keep going
CLL ; be sure the LINK is cleared for success
.POPJ ; all done

� .TITLE Test RAM Disk Batteries

; This routine tests the status of the RAM disk backup batteries. The
; DS1221 doesn't have a status bit to give us the battery state directly, but
; it does have a clever hack to allow us to infer what we want to know. If
; the batteries have failed, then the DS1221 will inhibit all chip select
; outputs on the _second_ memory cycle (but not the first!). We can use this
; by 1) reading any location and saving its value, 2) writing any different
; value to the same location, and 3) reading it back again. If the batteries
; are dead, the second cycle will be inhibited, and the value read in step 3
; will be the same as 1. Of course, this presupposes that there's functional
; memory installed in the first place, if there isn't then this algorithm will
; erroneously report that the batteries are dead.
;
; WARNING - because of the way the DS1221 battery test works, this function
; MUST be called before any other RAM disk accesses.
;
; NOTE: At this point, DF is 1, which selects RAM disk unit zero!
BATTST: STA ; ...

DCA BATTOK ; assume batteries are OK for now
LDAR ; and select SRAM bank zero
MM3 ; enable RAM disk access
TAD @[7777] ; (1) read the last byte of this bank
DCA BATTMP ; save it for a minute
TAD BATTMP ; ...
CIA ; make it negative
DCA @[7777] ; (2) and write it back
TAD BATTMP ; get the original data
TAD @[7777] ; (3) add what should be the complement
AND [377] ; ignore all but the bottom eight bits
SZA CLA ; if it's not zero then the second cycle was
DCA BATTOK ; ... inhibited because the batteries are dead
MM2 ; back to the default memory map

Page 74

BTS6120_Listing
.POPJ ; ...

; Temporary storage for BATTST...
BATTMP: .BLOCK 1 ; ...
� .TITLE Get Battery Status ROM Call

; The Get Battery Status ROM call will return the status of the RAM disk
; lithium backup batteries. As long as either battery has sufficient
; voltage, -1 will be return in the AC. If both batteries have failed, then
; zero is returned.
;
; PR0 / call the SBC6120 ROM firmware
; 0003 / get backup battery status function code
; / return with AC == -1 if batteries are OK
;
; NOTE: Because of the way the DS1221 works, the battery status can only
; be tested after power up. It isn't possible to monitor the battery status
; in real time!
GETBAT: CLA CLL ; this one's really easy!

TAD BATTOK ; return the battery status in the AC
.POPJ ; and that's it

.PAGE
� .TITLE Calculate RAM Disk Addresses

; This routine will calculate the RAM disk bank number and the relative
; offset within that bank, corresponding to a disk page number passed in
; location DKPAGE. The resulting bank number is simply loaded directly into
; the DAR via the LDAR IOT, and the offset is left in auto index location
; RAMPTR, where it can be used by the UNPACK and PACK routines. If the page
; number passed is illegal (i.e. greater than the size of the selected RAM
; disk unit) then the link will be set when this routine returns.
SETDAR: CLA CLL ; make sure the link is in a known state

TAD RDPAGE ; get the desired page
TAD RAMUSZ ; compare it to the size of this unit
SZL CLA ; is the page number legal?
.POPJ ; no - return with the LINK set

; Divide the page number by 21, the number of pages per bank, by repeated
; subtraction. This is kind of crude, but it only has to iterate 127 times,
; worst case, so the performance hit isn't that bad. We do have to be careful,
; though, because the largest legal page number is 2688, which is bigger than
; 2048. That means we have to treat the whole AC as a 12 bit UNSIGNED value!

DCA RAMDAR ; clear the disk address (quotient)
TAD RDPAGE ; get the selected RAM disk page number

SETDA1: CLL ; make sure the link is clear before starting
TAD [-BANKSZ] ; try to subtract another 21
SNL ; did it fit?
JMP SETDA2 ; nope - we can stop now
ISZ RAMDAR ; yes - increment the disk address
JMP SETDA1 ; and keep subtracting

; We get here when we're done dividing, with the quotient in RAMDAR and the
; remainder in the AC. To calculate the byte offset within a bank, we need
; to multiply the remainder by 192 (the number of bytes per 128 word page).
SETDA2: TAD [BANKSZ] ; restore the remainder

BSW ; then multiply by 64
DCA RAMPTR ; save offset*64 for a moment
TAD RAMPTR ; ...
CLL RAL ; then multiply by two again
TAD RAMPTR ; 192*x = 128*x + 64*x
TAD [-1] ; auto index registers pre-increment
DCA RAMPTR ; that's the final offset

; Set up the DAR with the bank number, from RAMDAR. Remember that for the
; 128K chips, we must always set A17 to enable the alternate chip select!

TAD RAMUSZ ; get the size of the selected unit
TAD [RAM128] ; ...
SNA CLA ; is this a 128K ram chip ?
TAD [32.] ; yes - always set A17

Page 75

BTS6120_Listing
TAD RAMDAR ; get the quotient from the division
LDAR ; and load the disk address register
CLA CLL ; LDAR doesn't clear the AC!
.POPJ ; and we're done

� .TITLE Select RAM Disk Unit

; This routine will set up the RAMCDF routine to select the desired RAM
; disk "unit". The unit number, 0..3, should be passed in RDUNIT. If the
; unit number given is illegal (i.e. greater than three) OR if there is no
; SRAM chip installed in the selected position, this routine will return
; with the link set.
RAMSEL: CLL CLA ; make sure the link is in a known state

TAD RDUNIT ; get the desired unit number
TAD [-4] ; see if the unit is legal
SZL CLA ; it must be less than 4
.POPJ ; no - return with the link set
TAD RDUNIT ; restore the original unit
CLL R3L ; and position it for a CDF instruction
CLL RAL ; (the link is zero for a success return!)
TAD [CDF 0] ; make a CDF to the corresponding field
DCA RAMCDF+1 ; and store that in the unit select routine

; Now that we know the unit number is valid, verify that this chip is really
; installed by checking the RDSIZE array for a non-zero value. As a side
; effect of this, we always leave the size of the currently selected unit in
; location RAMUSZ, where it's used by SETDAR to determine whether the page
; addressed is actually legal. We always want to update RAMUSZ, even if the
; chip is not installed, because this will also cause SETDAR to fail if the
; caller ignores the our error return and attempts a read or write anyway.

TAD RDUNIT ; get the unit number again
TAD [RDSIZE] ; index into the RDSIZE array
DCA SIZPTR ; ...
TAD @SIZPTR ; to get the size of this chip
CIA ; make it negative
DCA RAMUSZ ; and save that for SETDAR
TAD RAMUSZ ; ...
CLL ; make sure the link is in a known state
SNA CLA ; is this chip installed ?
CML ; nope - give the error return
.POPJ ; ...

; This little routine can be called, via a JMS instruction (not a .PUSHJ!)
; to change the DF and select the last RAM disk unit set by a call to RAMSEL.
RAMCDF: 0 ; call here via a JMS!

NOP ; gets overwritten with a CDF instruction
JMP @RAMCDF ; return...

� .TITLE RAM Disk Diagnostics

; This routine will do a simple test of the RAM disk array to determine
; whether each SRAM chip, from 0 to 3, is installed. If a given chip is
; installed, then we do another simple test to determine whether it is a
; 512K or 128K device, and then update the RDSIZE array accordingly.
; Because of the way disk sectors are laid out, only the first 4032 bytes
; (21 * 192) of every 4Kb bank are actually used. The last 64 bytes of each
; bank are available to us to use any way we like, including as a RAM test.
;
; There's one nasty complication here - the pin that corresponds to A17 on
; the 512K SRAM chips is actually an alternate chip enable on the 128K chips.
; Worse, this alternate enable is active HIGH, which means that A17 must be
; one or 128K chips won't talk at all. Fortunately, the pin that corresponds
; to A18 is a no connect on the 128K chips, so we can safely leave it zero.
; This explains the strange bank numbers selected in this test!
;
RDTEST: DCA RDUNIT ; start testing with unit zero

DCA RAMSIZ ; clear the total RAM size
RDTES0: .PUSHJ RAMSEL ; and set up RAMCDF and SIZPTR

; First test to see if this chip is even installed by writing alternating
; bit patterns to the last two locations and reading them back. If that works,
; then there must be something there!

Page 76

BTS6120_Listing
TAD [32.] ; test bank 32 so that A17 will be set
LDAR ; ...
CLA ; (LDAR doesn't clear the AC!)
JMS RAMCDF ; change the DF to select the unit
MM3 ; and enable the SRAM array
TAD [252] ; write alternating bits to the last two bytes
DCA @[7776] ; ...
TAD [125] ; ...
DCA @[7777] ; ...
TAD @[7776] ; now read 'em back
TAD @[7777] ; and add them up
IAC ; the sum should be 377, so make it 400
AND [377] ; and remember RAM disk is only 8 bits wide
SZA CLA ; did it work??
JMP RDTES1 ; no - this chip doesn't exist

; Some kind of SRAM chip is installed, and now we need to decide whether its
; 128K or 512K. The 128K chips ignore A18, so one easy test is to select
; bank 96 (which, to a 128K chip is the same as bank 32), zero out a location
; that we just tested, and then go back to bank 32 to see if it changed.

TAD [96.] ; select bank 96
LDAR ; which doesn't exist in a 128K chip
CLA ; (LDAR doesn't clear the AC!!)
DCA @[7777] ; this location in bank 0 used to hold 125
TAD [32.] ; back to bank 32
LDAR ; ...
CLA ; ...
TAD @[7777] ; and see what we've got
AND [377] ; remember RAM disk is only 8 bits wide
SZA CLA ; if it's zero, then we have a 128K chip
TAD [RAM512-RAM128]; nope - this must be a full 512K SRAM!
TAD [RAM128] ; only 128K, but better than nothing

; Store the chip size in RDSIZE and accumulate the total size...
RDTES1: MM2 ; return to the default memory map

CDF 1 ; and field
DCA @SIZPTR ; store the size in RDSIZE[unit]
TAD @SIZPTR ; ...
SNA ; was there any chip here at all?
JMP RDTES2 ; no - we can skip this part
SPA CLA ; KLUDGE - skip if this was a 128K chip
TAD [512.-128.] ; add 512K to the total RAM size
TAD [128.] ; add 128K " " " " "
TAD RAMSIZ ; ...
DCA RAMSIZ ; ...

; On to the next unit, if there are any more left...
RDTES2: ISZ RDUNIT ; go on to the next unit

TAD RDUNIT ; have we done all four ?
TAD [-4] ; ???
SZA CLA ; ???
JMP RDTES0 ; no - keep checking
TAD RAMSIZ ; yes - return the total RAM size in the AC
.POPJ ; and that's it

.PAGE
� .TITLE Get RAM Disk Size ROM Call

; PR0 function 2 will return the size of a RAM disk chip, in 128 word pages,
; in the AC. The AC should be loaded with the desired unit number, 0..3,
; before invoking PD0. If no chip is installed in the selected unit, zero
; will be returned in the AC. If the unit number is not in the range 0..3,
; then on return the LINK will be set to indicate an error.
;
; For example:
; TAD (unit / load the desired RAM disk unit, 0..3
; PR0 / call the ROM software
; 0002 / function code for Get RAM Disk Status
; / return the RAM disk size in the AC

; It's tempting to use the RAMSEL routine here to save some steps, but be
Page 77

BTS6120_Listing
; careful - RAMSEL will return with the LINK set (an error condition) if a
; valid unit number is selected but there is no SRAM chip installed there.
; That's not what we want for this ROM call, which should return an error only
; if the selected unit is > 3!
GETRDS: DCA RDUNIT ; save the unit number

TAD RDUNIT ; and get it back
CLL ; be sure the link is in a known state
TAD [-4] ; is it a legal unit number ?
SZL CLA ; skip if so
.POPJ ; no - return with the LINK set and AC clear
TAD RDUNIT ; one more time
TAD [RDSIZE] ; index the RDSIZE array
DCA SIZPTR ; ...
TAD @SIZPTR ; get the size of this disk
.POPJ ; and return it with the LINK cleared

� .TITLE ATA Disk Support

; BTS6120 supports any standard ATA hard disk connected to the SBC6120 IDE
; interface. Nearly all hard disks with IDE interfaces are ATA; conversely,
; nearly all non-hard disk devices (e.g. CDROMs, ZIP drives, LS-120s, etc)
; with IDE interfaces are actually ATAPI and not ATA. ATAPI requires a
; completely different protocol, which BTS6120 does not support, and BTS6120
; will simply ignore any ATAPI devices connected to the IDE interface.
; BTS6120 supports only a single physical drive, which must be set up as the
; IDE master, and any IDE slave device will be ignored.
;
; Since BTS6120 does not support cylinder/head/sector (C/H/S) addressing,
; the hard disk used must support logical block addressing (LBA) instead.
; All modern IDE/ATA drives support LBA, as do most drives manufactured in the
; last five or six years, however some very old drives may not. If BTS6120
; detects an ATA drive that does not support LBA it will display the message
; "IDE: Not supported" during startup and there after ignore the drive.
;
; All IDE devices, regardless of vintage, transfer data in sixteen bit words
; and each sector on an ATA disk contains 512 bytes, or 256 sixteen bit words.
; When writing to the disk, BTS6120 converts twelve bit PDP-8 words to sixteen
; bits by adding four extra zero bits to the left and, when reading from the
; disk, BTS6120 converts sixteen bit words to twelve bits by simply discarding
; the most significant four bits. No packing is done. This conveniently
; means that each ATA sector holds 256 PDP-8 words, or exactly one OS/8 block.
; It also means that one quarter of the disk space is wasted, in this era of
; multi-gigabyte disks that hardly seems like an issue.
;
; OS/8 handlers and the OS/8 file system use a single twelve bit word to hold
; block numbers, which means that OS/8 mass storage devices are limited to a
; maximum of 4096 blocks . Using the BTS6120 non-packing scheme for storing
; data, 4096 PDP-8 blocks are exactly 2Mb. Clearly, if a single OS/8 device
; corresponds to an entire hard disk then nearly all of the disk space would
; be wasted. The normal solution is to partition the hard disk into many OS/8
; units, with each unit representing only a part of the entire disk. Since
; OS/8 cannot support a single unit larger than 2Mb there isn't any point in
; allowing partitions to be larger than that, and since the smallest drives
; available today can hold hundreds if not thousands of 2Mb partitions, there
; isn't much point in allowing a partition to be smaller than that, either.
;
; Because of this, BTS6120 supports only fixed size partitions of 2Mb each.
; This greatly simplifies the software since a twenty four bit disk sector
; number can now be calculated simply by concatenating a twelve bit partition
; number with the twelve bit OS/8 relative block number (RBN). No "super
; block" with a partition table is needed to keep track of the sizes and
; positions of each partition, and the OS/8 handler is simplified since each
; disk partition is always the same size. A twenty four bit sector address
; permits disks of up to 8Gb to be fully used, which seems more than enough
; for a PDP-8.
;
; Once again, in BTS6120 the partition number simply refers to the most
; significant twelve bits of a twenty-four bit disk address, and the OS/8
; block number is the least significant twelve bits. It's no more complicated
; than that!
;
; The ID01 is the OS/8 handler for the SBC6120 IDE/ATA disk. It supports

Page 78

BTS6120_Listing
; eight units, IDA0 through IDA7, in a single page and may be assembled as
; either a system (IDSY) or non-system (IDNS) handler. The system handler
; version of the ID01 contains a secondary bootstrap that can be booted by
; the BTS6120 Boot command. The ID01 is a simple handler that uses HD-6120
; PR0 instruction to invoke BTS6120 functions for low level IDE disk access
; and data transfer.
;
; BTS6120 implements a partition map which defines the partition number
; corresponding to each OS/8 ID01 unit, and when an OS/8 program accesses an
; ID01 unit BTS6120 uses this table to determine the upper twelve bits of the
; LBA. At power on or after a MR command, BTS6120 initializes this partition
; map so that unit 0 accesses partition 0, unit 1 accesses partition 1, and
; so on up through unit 7 and partition 7. This mapping remains in effect
; until it is changed by either the PM command, or the Set IDE Disk Partition
; Mapping PR0 function.
;
; The largest mass storage device supported by OS/8 is actually only 4095
; blocks, not 4096, and so the last block of every 2Mb partition is never
; used by OS/8. This block can, however, be accessed via the Read/Write IDE
; disk PR0 function (section 6.5), and it can be used to store the name,
; creation date, and other information about that partition. The OS/8 PART
; program uses this to allow partitions to be mounted on ID01 logical units
; by name rather than partition number. Named partitions are strictly a
; function of the OS/8 PART program and BTS6120 knows nothing about them.
� .TITLE IDE Disk Interface

; In the SBC6120, the IDE interface is implemented via a standard 8255 PPI,
; which gives us 24 bits of general purpose parallel I/O. Port A is connected
; the high byte (DD8..DD15) of the IDE data bus and port B is connected to
; the low byte (DD0..DD7). Port C supplies the IDE control signals as follow:
;
; C0..C2 -> DA0 .. 2 (i.e. device address select)
; C.3* -> DIOR L (I/O read)
; C.4* -> DIOW L (I/O write)
; C.5* -> RESET L
; C.6* -> CS1Fx L (chip select for the 1Fx register space)
; C.7* -> CS3Fx L (" " " " 3Fx " ")
;
; * These active low signals (CS1Fx, CS3Fx, DIOR, and DIOW) are inverted in
; the hardware so that writing a 1 bit to the register asserts the signal.
;
; One nice feature of the 8255 is that it allows bits in port C to be
; individually set or reset simply by writing the correct command word to the
; control register - it's not necessary to read the port, do an AND or OR,
; and write it back. We can use this feature to easily toggle the DIOR and
; DIOW lines with a single PWCR IOT.
IDEINP=222 ; set ports A and B as inputs, C as output
IDEOUT=200 ; set ports A and B (and C too) as outputs
SETDRD=007 ; assert DIOR L (PC.3) in the IDE interface
CLRDRD=006 ; clear " " " " " " " "
SETDWR=011 ; assert DIOW L (PC.4) in the IDE interface
CLRDWR=010 ; clear " " " " " " " "
SETDRE=013 ; assert DRESET L (PC.5) in the IDE interface
CLRDRE=012 ; clear " " " " " " " "

; Standard IDE registers...
; (Note that these are five bit addresses that include the two IDE CS bits,
; CS3Fx (AC4) and CS1Fx (AC5). The three IDE register address bits, DA2..DA0
; correspond to AC9..AC11.
CS1FX=100 ; PC.6 selects the 1Fx register space
CS3FX=200 ; PC.7 " " 3Fx " " "
REGDAT=CS1FX+0 ; data (R/W)
REGERR=CS1FX+1 ; error (R/O)
REGCNT=CS1FX+2 ; sector count (R;W)
REGLB0=CS1FX+3 ; LBA byte 0 (or sector number) R/W
REGLB1=CS1FX+4 ; LBA byte 1 (or cylinder low) R/W
REGLB2=CS1FX+5 ; LBA byte 2 (or cylinder high) R/W
REGLB3=CS1FX+6 ; LBA byte 3 (or device/head) R/W
REGSTS=CS1FX+7 ; status (R/O)
REGCMD=CS1FX+7 ; command (W/O)

Page 79

BTS6120_Listing
; IDE status register (REGSTS) bits...
STSBSY=0200 ; busy
STSRDY=0100 ; device ready
STSDF= 0040 ; device fault
STSDSC=0020 ; device seek complete
STSDRQ=0010 ; data request
STSCOR=0004 ; corrected data flag
STSERR=0001 ; error detected

; IDE command codes (or at least the ones we use!)...
CMDEDD=220 ; execute device diagnostic
CMDIDD=354 ; identify device
CMDRDS=040 ; read sectors with retry
CMDWRS=060 ; write sectors with retry
CMDSUP=341 ; spin up
CMDSDN=340 ; spin down
� .TITLE Initialize IDE Drive and Interface

; This routine will initialize the IDE interface by configuring the 8255
; PPI and then asserting the IDE RESET signal to the drive. It then selects
; the master drive and waits for it to become ready, after which it returns.
; If there is no drive attached, or if the hardware is broken, then we'll time
; out after approximately 30 seconds of waiting for the drive to signal a
; ready status.
;
; Normally this routine will return with the AC and LINK both cleared, but
; if the drive reports an error then on return the LINK will be set and the
; drive's error status will be in the AC. In the case of a timeout, the
; LINK will be set and the AC will be -1 on return.
IDEINI: CLA ; ...

DCA DKSIZE ; zero means no disk is installed
TAD [IDEINP] ; PPI ports A and B are input and C is output
PWCR ; ...
PWPC ; clear all port C control lines
TAD [SETDRE] ; set RESET L
PWCR ; ...
TAD [-10] ; according to the ATA specification,
IAC ; ... we must leave RESET asserted for at
SZA ; ... least 25 microseconds
JMP .-2 ;
TAD [CLRDRE] ; deassert RESET L
PWCR ; ...
TAD [340] ; select the master drive, 512 byte sectors,
JMS @[IDEWRR] ; ... and logical block addressing (LBA) mode
REGLB3 ; ...
JMP @[WREADY] ; wait for the drive ready and return

� .TITLE Identify IDE/ATA Device

; This routine will execute the ATA IDENTIFY DEVICE command and store the
; first 256 bytes of the result, in byte mode, in the panel memory buffer at
; DSKBUF. One thing to keep in mind is that ATAPI devices (e.g. CDROMs, ZIP
; disks, etc) ignore this command completely and respond to the ATAPI IDENTIFY
; PACKET DEVICE command instead. This means that if there are any ATAPI
; devices attached we'll never see them, which is fine since we don't
; understand how to talk to ATAPI devices anyway!
;
; The drive's response to IDENTIFY DEVICE will be 256 words of sixteen bit
; data full of device specific data - model number, manufacturer, serial
; number, drive geometry, maximum size, access time, and tons of other cool
; stuff. The RDIBUF routine would pack this sixteen bit data into twelve bit
; words by throwing away the upper four bits of each word, but that doesn't
; make sense in this case since we'd be destroying most of the useful
; information. Instead, this routine reads the data in an unpacked format and
; stores one eight bit byte per PDP-8 word.
;
; Unfortunately this would mean that we need a 512 word buffer to store the
; response, which is too big for our DSKBUF in panel memory. We're in luck,
; however, because of the 256 words (512 bytes) returned by this command the
; ATA specification only defines the first 128 - the remaining half of the
; data is "vendor specific" and undefined. This routine simply throws this

Page 80

BTS6120_Listing
; part away, and only the first 128 words (256 bytes) of the drive's response
; are actually returned in the buffer.
;
; Like all the disk I/O routines, in the case of an error the LINK will
; be set and the contents of the drive's error register returned in the AC.
DISKID: .PUSHJ @[WREADY] ; (just in case the drive is busy now)

SZL ; any errors?
.POPJ ; yes - we can go home early!
TAD [CMDIDD] ; send the ATA identify device command
JMS @[IDEWRR] ; by writing it to the command register
REGCMD ; ...
.PUSHJ @[WDRQ] ; the drive should ask to transfer data next
SZL ; any errors?
.POPJ ; yes - just give up

; Get ready to ready to transfer data from the drive to our buffer...
TAD [DSKBUF-1] ; setup BUFPTR to point to DSKBUF
DCA BUFPTR ; ...
TAD [-128.] ; transfer 128 words this time
DCA XFRCNT ; ...
TAD [IDEINP] ; set PPI ports A and B to input mode
PWCR ; ...
TAD [REGDAT] ; make sure the IDE data register is selected
PWPC ; ...

; Read 256 bytes into the caller's buffer, one byte per word. Big endian
; ordering (i.e. high byte first) is defined by the ATA specification to give
; the correct character order for ASCII strings in the device data (e.g. model
; number, serial number, manufacturer, etc).
IDDEV1: TAD [SETDRD] ; assert DIOR

PWCR ; ...
PRPA ; read port A (the high byte) first
AND [377] ; only eight bits are valid
DCA @BUFPTR ; and store it in the buffer
PRPB ; then read port B (the low byte)
AND [377] ; ...
DCA @BUFPTR ; ...
TAD [CLRDRD] ; deassert DIOR
PWCR ; ...
ISZ XFRCNT ; have we done all 256 bytes?
JMP IDDEV1 ; nope - keep reading

; We've read our 256 bytes, but the drive still has another 256 more waiting
; in the buffer. We need to read those and throw them away...

TAD [-128.] ; we still need to read 128 more words
DCA XFRCNT ; ...

IDDEV2: TAD [SETDRD] ; assert DIOR
PWCR ; ...
NOP ; make sure the DIOR pulse is wide enough
NOP ; ...
TAD [CLRDRD] ; and then clear DIOR
PWCR ; ...
ISZ XFRCNT ; have we done all 128?
JMP IDDEV2 ; nope - keep reading

; Drives report the total number of LBA addressable sectors in words
; 60 and 61. Sectors are 512 bytes, so simply dividing this value by 2048
; gives us the total drive size in Mb. This code patches together twelve
; bits out of the middle of this doubleword, after throwing away the least
; significant 11 bits to divide by 2048. This allows us to determine the
; size of drives up to 4Gb in a single 12 bit word.

TAD @[DSKBUF+170] ; get the high byte of the low word
RAR ; throw away the 3 least significant
RTR ; ...
AND [37] ; keep just 5 bits from this byte
DCA DKSIZE ; save it for a minute
TAD @[DSKBUF+173] ; get the low byte of the high word
RTL ; left justify the seven MSBs of it
RTL ; ...
RAL ; ...
AND [7740] ; ...
TAD DKSIZE ; put together all twelve bits

Page 81

BTS6120_Listing
DCA DKSIZE ; ...

; All done - return success...
CLA CLL ; return with the AC and LINK clear
.POPJ ; ...

� .TITLE Get IDE Disk Size ROM Call

; The get IDE disk size call will return the size of the attached IDE/ATA
; disk, in megabytes. This call never fails - if no disk is attached it
; simply returns zero...
;
;CALL:
; PR0 / call SBC6120 ROM firmware
; 5 / subfunction for get disk size
; <return here with disk size, in megabytes, in AC>
;
GETDKS: CLA CLL ; ignore anything in the AC

TAD DKSIZE ; and return the disk size
.POPJ ; that's all there is to it!

� .TITLE IDE Disk Primary Bootstrap

; This routine will read block zero from IDE disk partition zero into page
; zero of field zero of main memory. The next step in the usual boot sequence
; would be to start the secondary bootstrap, but that's up to the caller...
IDBOOT: STA ; point the buffer to page 0

DCA BUFPTR ; ...
TAD [CDF 0] ; of field zero
DCA @[BUFCDF+1] ; ...
DCA BUFPNL ; of main memory
DCA DKPART ; read IDE disk partition zero
DCA DKRBN ; block zero
TAD [-128.] ; we only need the first 1/2 of the block
JMP @[DISKRD] ; ...

.PAGE
� .TITLE Read and Write IDE Sectors

; This routine will read a single sector from the attached IDE drive.
; The caller should set up DKPART and DKRBN with the disk partition and
; sector number, and BUFPTR, BUFCDF and BUFPNL with the address of a
; buffer in 6120 memory. If any errors are encountered, this routine will
; return with the LINK set and the drive's error status in the AC...
DISKRD: DCA BUFSIZ ; save the buffer size

.PUSHJ WREADY ; wait for the drive to become ready
SZL ; any errors detected??
.POPJ ; yes - quit now
.PUSHJ SETLBA ; set up the disk's LBA registers
TAD [CMDRDS] ; read sector with retry command
JMS @[IDEWRR] ; write that to the command register
REGCMD ; ...
.PUSHJ WDRQ ; now wait for the drive to finish
SZL ; any errors detected?
.POPJ ; yes - quit now
TAD BUFSIZ ; no - transfer data
JMP @[RDIBUF] ; ... from the sector buffer to memory

; This routine will write a single sector to the attached IDE drive. Except
; for the direction of data transfer, it's basically the same as DISKRD,
; including all parameters and error returns.
DISKWR: DCA BUFSIZ ; save the caller's record size

.PUSHJ WREADY ; wait for the drive to become ready
SZL ; did we encounter an error ?
.POPJ ; yes - just give up now
.PUSHJ SETLBA ; set up the disk address registers
TAD [CMDWRS] ; write sector with retry command
JMS @[IDEWRR] ; write that to the command register
REGCMD ; ...
.PUSHJ WDRQ ; wait for the drive to request data

Page 82

BTS6120_Listing
SZL ; did the drive detect an error instead?
.POPJ ; yes - just give up
TAD BUFSIZ ; nope - transfer the data
.PUSHJ @[WRIBUF] ; ... to the sector buffer from memory

; There's a subtle difference in the order of operations between reading and
; writing. In the case of writing, we send the WRITE SECTOR command to the
; drive, transfer our data to the sector buffer, and only then does the
; drive actually go out and access the disk. This means we have to wait
; one more time for the drive to actually finish writing, because only then
; can we know whether it actually worked or not!

JMP WREADY ; wait for the drive to finish writing
� .TITLE Spin Up and Spin Down IDE Drive

; This routine will send a spin up command to the IDE drive and then wait
; for it to finish. This command will take a fairly long time under normal
; conditions. Worse, since this is frequently the first command we send to
; a drive, if there's no drive attached at all we'll have to wait for it
; to time out. If any errors are encountered then the LINK will be set on
; return and the contents of the drive's error register will be in the AC.
SPINUP: CLA ; ...

TAD [CMDSUP] ; send the spin up command to the drive
JMS @[IDEWRR] ; by writing it to the command register
REGCMD ; ...
JMP WREADY ; wait for the drive to become ready

; This routine will send a spin down command. Drives are not required by
; the standard to implement this command, so there's no guarantee that any
; thing will actually happen!
SPINDN: CLA ; ...

TAD [CMDSDN] ; send the spin down command to the drive
JMS @[IDEWRR] ; ...
REGCMD ; ...
JMP WREADY ; and wait for it to finish

� .TITLE Setup IDE Unit, LBA and Sector Count Registers

; This routine will set up the IDE logical block address (LBA) registers
; according to the current disk address in locations DKPART and DKRBN. On IDE
; drives the sector number is selected via the cylinder and sector registers in
; the register file, but in the case of LBA mode these registers simply form a
; 24 bit linear sector number. In this software the disk partition number, in
; DKPART, gives the upper twelve bits of the address and the current sector
; number, in DKRBN, gives the lower twelve bits.
;
; This routine does not detect any error conditions...
SETLBA: CLA ; just in case!

TAD DKRBN ; get the lower 12 bits of of the LBA
JMS @[IDEWRR] ; and write the lowest 8 bits to LBA0
REGLB0 ; (the upper 4 bits are ignored)
TAD DKRBN ; now get the upper 4 bits of the sector number
BSW ; shift right eight bits
RTR ; ...
AND [17] ; get rid of the extra junk
DCA LBATMP ; ...
TAD DKPART ; get the disk partition number
RTL ; shift them left four bits
RTL ; ...
AND [360] ; and isolate just four bits of that
TAD LBATMP ; and build the middle byte of the LBA
JMS @[IDEWRR] ; set that register next
REGLB1 ; ...
TAD DKPART ; get the partition one more time
RTR ; shift it right four more bits
RTR ; ...
JMS @[IDEWRR] ; to make the upper byte of the 24 bit LBA
REGLB2 ; ...

; Note that the final four bits of the LBA are in LBA3 (the head and drive
; select register). Since we can only support 24 bit LBAs, these are unused.

Page 83

BTS6120_Listing
; The IDEINI routine initializes them to zero at the same time it selects the
; master drive, and we never change 'em after that. At the same time, IDEINI
; also selects LBA addressing mode (which is obviously very important to us!)
; and 512 byte sectors.

TAD [340] ; select the master drive, 512 byte sectors,
JMS @[IDEWRR] ; ... and logical block addressing (LBA) mode
REGLB3 ; ...

; Always load the sector count register with one...
NL0001 ; write 1
JMS @[IDEWRR] ; ...
REGCNT ; to the sector count register
.POPJ ; that's all we have to do

; Temporary storage for SETLBA...
LBATMP: .BLOCK 1
� .TITLE Wait for IDE Drive Ready

; This routine tests for the DRIVE READY bit set in the status register and
; at the same time for the DRIVE BUSY bit to be clear. READY set means that
; the drive has power and is spinning, and BUSY clear means that it isn't
; currently executing a command. The combination of these two conditions means
; that the drive is ready to accept another command. Normally this routine
; will return with both the AC and the LINK cleared, however if the drive sets
; the ERROR bit in its status register then it will return with the LINK set
; and the contents of the drive's error register in the AC.
;
; If there is no drive connected, or if the drive fails for some reason,
; then there is the danger that this routine will hang forever. To avoid
; that it also implements a simple timeout, and if the drive doesn't become
; ready within a certain period of time it will return with the LINK set and
; the AC equal to -1. If the system has just been powered up, then we'll
; have to wait for the drive to spin up before it becomes ready, and that can
; take a fairly long time. To be safe, the timeout currently stands at a
; full 30 seconds!
WREADY: TAD [7550] ; initialize the outer timeout counter

DCA RDYTMO+1 ; ...
DCA RDYTMO ; and the inner counter is always cleared

WREAD1: JMS @[IDERDR] ; go read the status register
REGSTS ; (register to read)
CLL RAR ; test the error bit first (AC11)
SZL ; ???
JMP DRVERR ; give up now if the drive reports an error
RAL ; restore the original status
AND [STSBSY+STSRDY] ; test both the READY and BUSY bits
TAD [-STSRDY] ; is READY set and BUSY clear?
CML ; (the last TAD will have set the link!)
SNA CLA ; ???
.POPJ ; yes - return now with the AC and LINK clear
ISZ RDYTMO ; increment the inner timeout counter
JMP WREAD1 ; no overflow yet
ISZ RDYTMO+1 ; when the inner counter overflows, increment
JMP WREAD1 ; ... the outer counter too

; Here in the case of a drive time out...
CLA CLL CML CMA ; return with AC = -1 and the LINK set
.POPJ ; ...

; Temporary storage for WREADY...
RDYTMO: .BLOCK 2 ; a double word time out counter
� .TITLE Wait for IDE Data Request

; This routine will wait for the DRQ bit to set in the drive status register.
; This bit true when the drive is ready to load or unload its sector buffer,
; and normally a call to this routine will be immediately followed by a call
; to ether RDIBUF or WRIBUF. Normally this routine will return with both the
; LINK and the AC cleared, however if the drive sets its error bit then the
; LINK will be 1 on return and the drive's error status will be in the AC.
;
; WARNING - unlike WREADY, this routine does not have a timeout!

Page 84

BTS6120_Listing
WDRQ: JMS @[IDERDR] ; read the drive status register

REGSTS ; ...
CLL RAR ; test the error bit (AC11)
SZL ; is it set?
JMP DRVERR ; yes - give the error return
RAL ; no - restore the original status value
AND [STSBSY+STSDRQ] ; and test the BUSY and DRQ flags
TAD [-STSDRQ] ; wait for BUSY clear and DRQ set
CML ; (the last TAD will have set the link!)
SZA CLA ; well?
JMP WDRQ ; nope - keep waiting
.POPJ ; yes - return with AC and LINK cleared!

; We get here if the drive sets the error flag in the status register. In
; this case we return with the link bit set and the contents of the drive
; error register in the AC.
DRVERR: JMS @[IDERDR] ; read the drive error register

REGERR ; ...
STL ; and be sure the link is set
.POPJ ; ...

.PAGE
� .TITLE Write IDE Sector Buffer

; This routine will write PDP-8 twelve bit words to the IDE drive's sixteen
; bit data (sector) buffer. IDE drives naturally transfer data in sixteen bit
; words, and we simply store each twelve bit word zero extended. This wastes
; 25% of the drive's capacity, but in these days of multiple gigabyte disks,
; that hardly seems important. This also means that 256 PDP-8 words exactly
; fill one IDE sector, which is very convenient for OS/8!
;
; The caller is expected to set up BUFPTR, BUFCDF and BUFPNL to point to the
; buffer in 6120 memory. The negative of the buffer size should be passed in
; the AC, however we must always write exactly 256 words to the drive regard-
; less of the buffer size. If the buffer is smaller than that, then the last
; word is simply repeated until we've filled the entire sector. This is
; necessary for OS/8 handler "half block" writes.
;
; This routine does not wait for the drive to set DRQ, nor does it check the
; drive's status for errors. Those are both up to the caller.
WRIBUF: DCA BUFSIZ ; save the actual buffer size

TAD [-256.] ; but always transfer 256 words, regardless
DCA XFRCNT ; ...
TAD [IDEOUT] ; and set ports A and B to output mode
PWCR ; ...
TAD [REGDAT] ; make sure the IDE data register is addressed
PWPC ; ...
JMS @[BUFCDF] ; change to the buffer's field

; Transfer 256 twelve bit words into 256 sixteen bit words...
WRIBU1: TAD @BUFPTR ; and get the next data word

DCA BUFTMP ; save it temporarily
TAD BUFTMP ; ...
PWPB ; write the lowest 8 bits to port B
TAD BUFTMP ; then get the upper four bits
BSW ; ...
RTR ; ...
AND [17] ; ensure that the extra bits are zero
PWPA ; and write the upper four bits to port A
TAD [SETDWR] ; assert DIOW
PWCR ; ...
TAD [CLRDWR] ; and then clear it
PWCR ; ...
ISZ XFRCNT ; have we done 256 words??
SKP ; no - keep going
JMP WRIBU3 ; yes - always stop now

ISZ BUFSIZ ; have we filled the buffer ?
JMP WRIBU1 ; nope - keep copying

; Here when we've emptied the 6120 buffer, but if we haven't done 256 words
; we have to keep going until we've filled the drive's sector buffer. All we

Page 85

BTS6120_Listing
; need to do is to keep asserting DIOW, which simply repeats the last word
; written!
WRIBU2: TAD [SETDWR] ; assert DIOW

PWCR ; ...
TAD [CLRDWR] ; and deassert DIOW
PWCR ; ...
ISZ XFRCNT ; have we finished the sector?
JMP WRIBU2 ; nope

; Restore the PPI ports to input mode and return. Note that some disk
; I/O routines JMP to WRIBUF as the last step, so it's important that we
; always return with the AC and LINK cleared to indicate success.
WRIBU3: CDF 1 ; return to our field

SPD ; and to panel memory
TAD [IDEINP] ; reset ports A and B to input
PWCR ; ...
CLA CLL ; return success
.POPJ ; all done here

� .TITLE Read IDE Sector Buffer

; This routine will read sixteen bit words from the IDE drive's sector
; buffer and store them in twelve bit PDP-8 memory words. Data is converted
; from sixteen to twelve bits by the simple expedient of discarding the upper
; four bits of each word - it can't get much easier than that!
;
; The caller is expected to set up BUFPTR, BUFCDF and BUFPNL to point to the
; buffer in 6120 memory. The negative of the buffer size should be passed in
; the AC. This is the number of words that will be stored in the buffer,
; however we'll always read exactly 256 words from the drive regardless of
; the buffer size. If the buffer is smaller than this then the extra words
; are simply discarded. This is necessary for OS/8 handler "half block" reads.
;
; Like WRIBUF, this routine does not wait for the drive to set DRQ, nor does
; it check the drive's status for errors. Those are both up to the caller.
RDIBUF: DCA BUFSIZ ; save the actual buffer size

TAD [-256.] ; but always transfer 256 words, regardless
DCA XFRCNT ; ...
TAD [IDEINP] ; and set ports A and B to input mode
PWCR ; ...
TAD [REGDAT] ; make sure the IDE data register is addressed
PWPC ; ...
JMS @[BUFCDF] ; change to the buffer's field

; Transfer 256 twelve bit words...
RDIBU1: TAD [SETDRD] ; assert DIOR

PWCR ; ...
PRPB ; capture the lower order byte
AND [377] ; remove any junk bits, just in case
DCA BUFTMP ; and save that for a minute
PRPA ; then capture the high byte
AND [17] ; we only want four bits from that
BSW ; shift it left eight bits
CLL RTL ; ...
TAD BUFTMP ; assemble a complete twelve bit word
DCA @BUFPTR ; and store it in the buffer
TAD [CLRDRD] ; finally we can deassert DIOR
PWCR ; ...
ISZ XFRCNT ; have we done 256 words??
SKP ; no - keep going
JMP RDIBU3 ; yes - always stop now

ISZ BUFSIZ ; have we filled the buffer ?
JMP RDIBU1 ; nope - keep copying

; Here when we've filled the 6120 buffer, but if we haven't done 256 words
; we have to keep going until we've emptied the drive's sector buffer too.
; All we need to do is to keep asserting DIOR - there's no need to actually
; capture the data!
RDIBU2: TAD [SETDRD] ; assert DIOR

PWCR ; ...
TAD [CLRDRD] ; and deassert DIOR
PWCR ; ...

Page 86

BTS6120_Listing
ISZ XFRCNT ; have we finished the sector?
JMP RDIBU2 ; nope

; Restore the ROM field and memory space and return. Note that some disk
; I/O routines JMP to RDIBUF as the last step, so it's important that we
; always return with the AC and LINK cleared to indicate success.
RDIBU3: CDF 1 ; ...

SPD ; ...
CLA CLL ; always return success
.POPJ ; all done here

; Temporary storage for RDIBUF and WRIBUF...
BUFTMP: .BLOCK 1 ; temporary for packing and unpacking
� .TITLE Initialize Disk Partition Map

; This routine will initialize the disk partition map so that unit 0
; maps to partition 0, unit 1 maps to partition 1, etc... This is the
; default partition mapping used after a power on and remains in effect
; until changed by an OS/8 program with the "Set Partition Mapping" PR0
; subfunction.
INIPMP: CLA CLL ; just in case...

TAD [PARMAP-1] ; set up an auto index register
DCA XX1 ; ... to address the partition map
DCA DKPART ; count partition/unit numbers here

INIPM1: TAD DKPART ; get the current partition/unit
DCA @XX1 ; and set the next entry in the map
TAD DKPART ; see how many we've done
TAD [-10] ; have we done all eight?
SZL CLA ; skip if not
.POPJ ; yes - we can quit now
ISZ DKPART ; nope - do the next one
JMP INIPM1 ; ...

.PAGE
� .TITLE Get/Set Disk Partition Map ROM Call

; This routine handles the "Set Disk Partition Mapping" (6) PR0 subfunction,
; which simply sets the partition number for the specified OS/8 unit. This
; change takes effect immediately, so if you've booted from the IDE disk
; you'll want to be a little careful about remapping the system partition!
; This function returns with the LINK set if an error occurs, currently the
; only failure that can happen is if the unit number is .GT. 7. Note that
; no range checking is done on the partition number to ensure that it fits
; within the disk size - if it doesn't we'll simply get I/O errors when OS/8
; attempts to access that partition.
;
;CALL:
; TAD (part / load the partition number into the AC
; PR0 / invoke the ROM monitor
; 6 / subfunction for Set disk partition
; <unit> / OS/8 unit to be changed, 0..7
; <return> / LINK set if unit .GT. 7
;
SETPMP: DCA DKPART ; save the partition number for a minute

.PUSHJ @[GETARG] ; and get the unit number
DCA DKUNIT ; ...
TAD DKUNIT ; ...
CLL ; be sure the link is in a known state
TAD [-10] ; see if the unit number is legal
SZL CLA ; the link will be set if it isn't
.POPJ ; take the error return w/o changing anything
TAD DKUNIT ; construct an index to the partition map
TAD [PARMAP-1] ; ...
DCA XX1 ; ...
TAD DKPART ; then get the desired partition number
DCA @XX1 ; and change it
.POPJ ; return with the LINK and AC both clear

; This routine handles the "Get Disk Partition Mapping" (7) PR0 subfunction,
Page 87

BTS6120_Listing
; which simply returns the partition number currently associated with a
; specific OS/8 unit. The only way it can fail is if the unit number is
; greater than 7!
;
;CALL:
; PR0 / invoke the ROM monitor
; 7 / subfunction for get disk partition
; <unit> / OS/8 unit to be changed, 0..7
; <return> / with partition number in the AC
;
GETPMP: .PUSHJ @[GETARG] ; and get the unit number

DCA DKUNIT ; ...
CLL ; be sure the link is in a known state
TAD [-10] ; see if the unit number is legal
TAD DKUNIT ; ...
SZL CLA ; the link will be set if it isn't
.POPJ ; take the error return
TAD DKUNIT ; construct an index to the partition map
TAD [PARMAP-1] ; ...
DCA XX1 ; ...
TAD @XX1 ; and get the current partition
.POPJ ; return with partition in the AC and LINK=0

� .TITLE IDE Disk Read/Write ROM Call

; The calling sequence for the PR0 IDE disk R/W function is:
;
; PR0
; 0004 / panel function code for IDE disk I/O
; <arg1> / R/W bit, page count, buffer field and unit
; <arg2> / buffer address
; <arg3> / starting block number
; <return> / if any errors occur, the LINK will be set and the
; / the drive's error register are in the AC
;
; Except for the function code, the use of block numbers instead of page
; numbers, and the error codes, this calling sequence is identical to the
; RAM disk I/O PR0 subfunction!
;
DISKRW: .PUSHJ @[SETBUF] ; set up MUUO, BUFPTR, BUFCDF and RWCNT

.PUSHJ @[GETARG] ; and lastly get the disk block
DCA DKRBN ; ...

; See if there really is a hard disk attached. If not, then immediately
; take the error return with the AC set to -1.

TAD DKSIZE ; if there is a disk attached
SZA CLA ; then DKSIZE will be non-zero
JMP DKRW0 ; it is - it's safe to proceed
CLA CLL CML CMA ; no disk - return LINK = 1 and AC = -1
.POPJ ; and quit now

; The unit number is really just an index into the partition table and,
; since it's limited to three bits and eight units are supported, there's
; no need to range check it!
DKRW0: TAD MUUO ; get the unit number

AND [7] ; ...
TAD [PARMAP-1] ; create an index to the partition table
DCA XX1 ; ...
TAD @XX1 ; get the actual partition number
DCA DKPART ; ... that's mapped to this unit

; Set up a pointer to the I/O routine. All of the rest of this code is
; independent of the direction of data flow...

TAD MUUO ; get the function code
SMA CLA ; should we read (0) or write (1) ?
TAD [DISKRD-DISKWR]; ... read
TAD [DISKWR] ; ... write
DCA DISKIO ; save the address of the routine

; We must take a minute out to share a word about pages vs blocks. An OS/8
; handler call specifies the size of the data to be read or written in pages,
; which are 128 words or exactly 1/2 of a 256 word disk block. This raises

Page 88

BTS6120_Listing
; the unfortunate possibility that a program could ask to transfer an odd
; number of pages, which would mean that we'd need to read or write half a
; block! We can't ignore this problem because it really does happen and there
; really are OS/8 programs that attempt to transfer an odd number of pages.
;
; This is primarily an issue for reading, because if an odd number of pages
; are to be read we must be very careful to stop copying data to memory after
; 128 words. If we don't, a page of memory will be corrupted by being over
; written with the second half of the last disk block! It's also permitted in
; OS/8 to write an odd number of pages, but since many OS/8 mass storage
; devices have 256 word sectors it isn't always possible to write half a
; block. In this case it's undefined what gets written to the last half of
; the final block - it could be zeros, random garbage, or anything else.

; This loop reads or writes pages 'till we've done all we're supposed to...
DKRW1: ISZ RWCNT ; is there an odd page left over?

SKP ; nope - it's safe to do a full block
JMP DKRW2 ; yes - go transfer a half block and quit

TAD [-256.] ; transfer two pages this time
.PUSHJ @DISKIO ; either read or write
SZL ; were there any errors?
.POPJ ; yes - just abort the transfer now
ISZ DKRBN ; increment the block number for next time
NOP ; (this should never happen, but...)
ISZ RWCNT ; are there more pages left to do ?
JMP DKRW1 ; yup - keep going
.POPJ ; all done - return AC = LINK = 0

; Here to transfer one, final, half block...
DKRW2: TAD [-128.] ; only do a single page this time

JMP @DISKIO ; transfer it and we're done

; Local storage for DISKRW...
DISKIO: .BLOCK 1 ; gets a pointer to either DISKRD or DISKWR
� .TITLE Write IDE Register

; This routine will write an eight bit value to any IDE drive register,
; except the data regsister, by toggling all the appropriate PPI port lines.
; The address of the register, which should include the CS1Fx and CS3Fx bits,
; is passed in line and the byte to be written is passed in the AC. Note that
; all IDE registers, with the exception of the data register, are eight bits
; wide so there's never a need to worry about the upper byte!
;
;CALL:
; TAD [value] ; eight bit value to write to the IDE register
; JMS IDEWRR
; xxxx ; IDE register number, plus CS1Fx and CS3Fx bits
; <always return here, with AC cleared>
;
IDEWRR: 0 ; CALL HERE WITH A JMS!!!

DCA IDETMP ; save the value to write for a minute
TAD [IDEOUT] ; set ports A and B to output mode
PWCR ; write the PPI control register
TAD @IDEWRR ; get the IDE register address
ISZ IDEWRR ; (skip it when we return)
PWPC ; send the address to the drive via port C

; Note that we don'e bother to drive the upper data byte (D8..D15) with any
; particular value. The PPI will have set these bits to zero when we changed
; the mode to output, but the drive will ignore them anyway.

TAD IDETMP ; get the original data back
PWPB ; (port B drives DD0..DD7)
TAD [SETDWR] ; assert DIOW
PWCR ; ...
TAD [CLRDWR] ; and then clear it
PWCR ; ...

; We always leave our side of the PPI data bus (e.g. ports A and B) in
; input mode to avoid any accidental contention should the drive decide it
; wants to output data for some unknown reason.

TAD [IDEINP] ; set ports A and B to input mode
Page 89

BTS6120_Listing
PWCR ; ... (but C is still an output)
JMP @IDEWRR ; that's it!

� .TITLE Read IDE Register

; This routine will read one IDE drive register and return the value in the
; AC. all IDE registers, with the exception of the data register, are always
; eight bits wide so there's no need to worry about the upper byte here. We
; simply ignore it. The address of the register to be read should be passed
; inline, following the call to this procedure.
;
;CALL
; JMS IDERDR
; xxxx ; IDE register number, including CS1Fx and CS3Fx bits
; <return here with 8 bit value in AC>
;
IDERDR: 0 ; CALL HERE WITH A JMS!!

CLA ; just in case...
TAD [IDEINP] ; set ports A and B to input
PWCR ; ... (this should be unnecessary,
TAD @IDERDR ; get the IDE register address
ISZ IDERDR ; (and don't forget to skip it!)
PWPC ; send it to the drive via port C
TAD [SETDRD] ; assert DIOR
PWCR ; ...
NOP ; give the drive and 8255 time to settle
PRPB ; capture D0..D7
AND [377] ; make sure we don't get noise in DX0..DX3
DCA IDETMP ; and save that for a minute
TAD [CLRDRD] ; now deassert DIOR
PWCR ; ...
TAD IDETMP ; get the data back
JMP @IDERDR ; and return it in the AC

; Local storage for RD/IDEWRR...
IDETMP: .BLOCK 1 ; a temporary for saving the AC

.PAGE
� .TITLE I/O Buffer Management

; This routine is used parse the argument list for ROM calls that take OS/8
; handler like argument lists, primarily the RAM disk and IDE disk I/O calls.
; It will do a GETARG and store the first argument, which contains the R/W
; bit, page count, buffer field and unit number, in MUUO. It extracts the
; buffer field from this argument, builds a CDF instruction, and stores that
; at BUFCDF for later use. It also extracts the page count from this
; argument, converts it to a negative number, and stores the result at RWCNT.
; Finally, it does another GETARG to fetch the address of the caller's buffer
; and stores that at BUFPTR.
SETBUF: .PUSHJ @[GETARG] ; get the first argument

DCA MUUO ; save that - it's got lots of useful bits!
TAD MUUO ; get the field bits from MUUO
AND [70] ; ...
TAD [CDF 0] ; make a CDF instruction out of them
DCA BUFCDF+1 ; and save them for later
TAD MUUO ; get the page count from the call
AND [3700] ; ...
SNA ; is it zero ?
NL4000 ; yes - that means to transfer a full 32 pages
BSW ; right justify the page count
CIA ; make it negative for an ISZ
DCA RWCNT ; ...
.PUSHJ @[GETARG] ; get the buffer pointer from the argument list
TAD [-1] ; correct for pre-incrementing auto-index
DCA BUFPTR ; and save that
DCA BUFPNL ; this buffer is always in main memory
.POPJ ; all done for now

; This routine will set up BUFPTR, BUFCDF, RWCNT and BUFPNL to point to
; our own internal buffer in panel memory at DSKBUF. This is used by the

Page 90

BTS6120_Listing
; disk dump, disk load, format and boot commands when they need to read or
; write disk blocks without distrubing main memory.
PNLBUF: TAD [DSKBUF-1] ; point to the disk buffer

DCA BUFPTR ; set the buffer address for DISKRD/DISKWR
TAD [CDF 1] ; this buffer lives in our field 1
DCA BUFCDF+1 ; ...
NLM2 ; the buffer size is always 2 pages
DCA RWCNT ; ...
NL7777 ; write this data to PANEL memory!
DCA BUFPNL ; ...
.POPJ ; and we're done

; This little routine is called, via a JMS instruction (not a .PUSHJ!) to
; change the DF to the field of the user's buffer. In addition, if the
; BUFPNL flag is not set, it will execute a CPD instruction so that buffer
; data is stored in main memory. This is the usual case.
BUFCDF: 0 ; call here with a JMS

NOP ; gets over written with a CDF instruction
CLA ; just in case
TAD BUFPNL ; is the panel buffer flag set?
SNA CLA ; ???
CPD ; no - address main memory now
JMP @BUFCDF ; ...

� .TITLE Copy Memory ROM Calls

; This ROM function can copy up to 4096 words from any field in either main
; or panel memory to any other address and field in either main or panel
; memory. It can be used to move data and/or code into panel memory and
; back again, or simply to move one part of main memory to another.
;
;CALL:
; PR0
; 0010 / copy memory subfunction
; p0n0 / source field and memory space
; <address> / source address
; p0n0 / destination field and memory space
; <address> / destination address
; <word count> / number of words to be transferred
;
; The source and destination field words each contain the field number in
; bits 6..8, and a flag in bit 0 which is one for panel memory and zero for
; main memory. The last word of the argument list is the number of words
; to be copied - a value of zero copies 4096 words.

; Set up the source address...
MEMMOV: .PUSHJ @[GETARG] ; get the source field

CLL ; make sure the link is in a known state
TAD [4000] ; put the panel/main memory flag in the LINK
AND [70] ; make a CDF instruction
TAD [CDF 0] ; ...
DCA SRCCDF ; ...
TAD [CPD] ; assume the source is in main memory
SZL ; but is it really ?
TAD [SPD-CPD] ; no - use panel memory
DCA SRCSPD ; ...
.PUSHJ @[GETARG] ; get the buffer address
TAD [-1] ; correct for pre-increment auto index
DCA XX1 ; ...

; Set up the destination address...
.PUSHJ @[GETARG] ; get the destination field
CLL ; make sure the link is in a known state
TAD [4000] ; put the panel/main memory flag in the LINK
AND [70] ; make a CDF instruction
TAD [CDF 0] ; ...
DCA DSTCDF ; ...
TAD [CPD] ; assume the destination is in main memory
SZL ; but is it really ?
TAD [SPD-CPD] ; no - use panel memory
DCA DSTSPD ; ...

Page 91

BTS6120_Listing
.PUSHJ @[GETARG] ; get the buffer address
TAD [-1] ; correct for pre-increment auto index
DCA XX2 ; ...

; And finally the word count...
.PUSHJ @[GETARG] ; ...
CIA ; make it negative for ISZ
DCA XFRCNT ; ...

; This loop does the actual work of copying data!
SRCCDF: NOP ; over written with a CDF instruction
SRCSPD: NOP ; over written with a SPD/CPD IOT

TAD @XX1 ; get a word of source data
DSTCDF: NOP ; over written with a CDF instruction
DSTSPD: NOP ; overwritten with a SPD/CPD IOT

DCA @XX2 ; and store the word
ISZ XFRCNT ; have we done them all ?
JMP SRCCDF ; no - keep copying

; All done!
SPD ; be sure the field and memory space are safe
CDF 1 ; ...
CLL CLA ; and always return success
.POPJ ; ...

.PAGE
� .TITLE Free Space for Future Expansion!

.PAGE 16
� .TITLE Command Names Table

; This table gives the names of all the commands known to the monitor. Each
; entry consists of a one or two letter command name, in SIXBIT, followed by
; the address of a routine to execute it. Although this table is stored in
; field 1, all the command routines are implicitly in field zero! The zero
; entry at the end is a "catch all" that is called if none of the previous
; names match, and points to an error routine. With the exception of this last
; entry, the order of the table is not significant.
CMDTBL:

.SIXBIT /H / ; Help
HELP ; ...
.SIXBIT /RP/ ; RePeat
REPEAT ; ...
.SIXBIT /E / ; Examine
EMEM ; ...
.SIXBIT /EP/ ; Examine Panel memory
EPMEM ; ...
.SIXBIT /D / ; Deposit
DMEM ; ...
.SIXBIT /DP/ ; Deposit Panel memory
DPMEM ; ...
.SIXBIT /ER/ ; Examine Register
EREG ; ...
.SIXBIT /DR/ ; Deposit Register
DREG ; ...
.SIXBIT /BM/ ; Block Move
BMOVE ; ...
.SIXBIT /CK/ ; ChecKsum
CKMEM ; ...
.SIXBIT /WS/ ; Word Search
SEARCH ; ...
.SIXBIT /CM/ ; Clear Memory
CMEM ; ...
.SIXBIT /FM/ ; Fill Memory
FLMEM ; ...
.SIXBIT /BL/ ; Breakpoint List
BLIST ; ...
.SIXBIT /BP/ ; BreakPoint
BPTCOM ; ...
.SIXBIT /BR/ ; Breakpoint Remove
BREMOV ; ...

Page 92

BTS6120_Listing
.SIXBIT /C / ; Continue
CONTCM ; ...
.SIXBIT /SI/ ; Single Instruction with no trace
SNCOM ; ...
.SIXBIT /ST/ ; STart
START ; ...
.SIXBIT /P / ; Proceed
PROCEE ; ...
.SIXBIT /TR/ ; single instruction with TRace
SICOM ; ...
.SIXBIT /VE/ ; VErsion (of monitor)
VECOM ; ...
.SIXBIT /TW/ ; Terminal Width
TWCOM ; ...
.SIXBIT /TP/ ; Terminal Page
TPCOM ; ...
.SIXBIT /EX/ ; EXECUTE (IOT instruction)
XCTCOM ; ...
.SIXBIT /MR/ ; MASTER RESET
CLRCOM ; ...
.SIXBIT /LP/ ; LOAD PAPER (tape from console)
CONLOD ; ...
.SIXBIT /DD/ ; Disk (IDE) Dump
DDDUMP ; ...
.SIXBIT /RD/ ; Disk (RAM) Dump
RDDUMP ; ...
.SIXBIT /DL/ ; Disk (IDE) Load
DLLOAD ; ...
.SIXBIT /RL/ ; Disk (RAM) Load
RLLOAD ; ...
.SIXBIT /DF/ ; Disk (IDE) Format
DFRMAT ; ...
.SIXBIT /RF/ ; Disk (RAM) Format
RFRMAT
.SIXBIT /B / ; Bootstrap ram disk
BOOT
.SIXBIT /PM/ ; Partition Map
PMEDIT ; ...
.SIXBIT /PC/ ; Partition Copy
PCOPY ; ...
0000 ; This must always be the last entry
COMERR ; Where to go if none of the above matches

� .TITLE Argument Tables for Various Commands

; This table gives a list of the legal register names for the ER (Examine
; Register) command...
ENAMES: .SIXBIT /AC/ ; The AC

TYPEAC
.SIXBIT /PC/ ; The PC
TYPEPC
.SIXBIT /MQ/ ; The MQ
TYPEMQ
.SIXBIT /PS/ ; The processor status
TYPEPS
.SIXBIT /SR/ ; The switch register
TYPESR
0000 ; None of the above
COMERR

; This table gives a list of the legal register names for the DR (deposit
; register) command...
DNAMES: .SIXBIT /AC/ ; The AC

DAC
.SIXBIT /PC/ ; The PC
DPC
.SIXBIT /MQ/ ; The MQ
DMQ
.SIXBIT /PS/ ; The flags
DPS
.SIXBIT /SR/ ; The switch register
DSR

Page 93

BTS6120_Listing
0000 ; None of the above
COMERR

; This table is a list of the arguments to the B (BOOT) command...
BNAMES: .SIXBIT /VM/ ; VMA0

BTVMA0
.SIXBIT /ID/ ; IDA0
BTIDA0
0000 ; end of list
COMERR

� .TITLE Messages

; General purpose messages...
CKSMSG: .TEXT /Checksum = /
MEMMSG: .TEXT /?Memory error at /
ERRILV: .TEXT /Illegal value/
ERRSRF: .TEXT /Search fails/
ERRRAN: .TEXT /Wrong order/
ERRWRP: .TEXT /Wrap around/
SKPMSG: .TEXT /Skip /
ERRDIO: .TEXT \?I/O Error \
ERRCKS: .TEXT /Checksum error/
ERRNBT: .TEXT /No bootstrap/
ERRNDK: .TEXT /No disk/

; Program trap messages...
BPTMSG: .TEXT /%Breakpoint at /
PR0MSG: .TEXT /?Illegal PR0 function at /
BRKMSG: .TEXT /%Break at /
PRNMSG: .TEXT /?Panel trap at /
HLTMSG: .TEXT /?Halted at /
TRPMSG: .TEXT /?Unknown trap at /

; Breakpoint messages...
ERRNBP: .TEXT /None set/
ERRNST: .TEXT /Not set/
ERRAST: .TEXT /Already set/
ERRBTF: .TEXT /Table full/

; Register names...
ACNAME: .TEXT /AC>/
PCNAME: .TEXT /PC>/
MQNAME: .TEXT /MQ>/
IRNAME: .TEXT /IR>/
SRNAME: .TEXT /SR>/
PSNAME: .TEXT /PS>/
SP1NAM: .TEXT /SP1>/
SP2NAM: .TEXT /SP2>/

; Disk formatting status messages...
FCFMSG: .TEXT \Format unit/partition \
FM1MSG: .TEXT /Writing /
FM2MSG: .TEXT / Verifying /
FM3MSG: .TEXT / Done/
ERRDSK: .TEXT \?Verification error, block/page \

; Partition copy messages....
CCFMSG: .TEXT \Overwrite partition \
CP1MSG: .TEXT /Copying /
CP2MSG=FM3MSG

; Partition map messages...
PM1MSG: .TEXT /Unit /
PM2MSG: .TEXT / -> Partition /

; Device names that get printed by the boot sniffer...
VMAMSG: .TEXT /-VMA0/
IDAMSG: .TEXT /-IDA0/

; System name message...
SYSNM1: .TEXT /SBC6120 ROM Monitor V/
SYSNM2: .TEXT / Checksum /

Page 94

BTS6120_Listing
SYSNM3: .TEXT / \d \h/
SYSCRN: .TEXT /Copyright (C) 1983-2003 Spare Time Gizmos. All rights reserved./

; RAM disk status message...
RAMMS1: .TEXT /NVR: /
RAMMS3: .TEXT /KB - Battery /
BOKMSG: .TEXT /OK/
BFAMSG: .TEXT /FAIL/

; IDE disk status message...
IDEMS1: .TEXT /IDE: /
IDEMS2: .TEXT /MB - /
IDEMS3: .TEXT /Not detected/
IDEMS4: .TEXT /Not supported/
� .TITLE Help Text

; This table is used by the HELP command to generate a page of text
; describing the monitor commands. Each word is a pointer to a text string,
; also in field 1, which contains a single line of text, usually a description
; of one command. The table ends with a zero word.
HLPLST:

; Examine/Deposit commands...
.DATA HLPEDC
.DATA HLPE, HLPEP, HLPER, HLPD, HLPDP, HLPDR
; Memory commands...
.DATA HLPNUL, HLPMEM
.DATA HLPBM, HLPCK, HLPWS, HLPFM, HLPCM
; Breakpoint commands...
.DATA HLPNUL, HLPBPC
.DATA HLPBP, HLPBR, HLPBL, HLPP
; Program control commands...
.DATA HLPNUL, HLPPCC
.DATA HLPST, HLPC, HLPSI, HLPTR, HLPEX, HLPMR
; Disk commands...
.DATA HLPNUL, HLPDSK
.DATA HLPLP, HLPRD, HLPRL, HLPRF, HLPDD, HLPDL, HLPDF
.DATA HLPPC, HLPPM, HLPB
; Other (miscellaneous) commands...
.DATA HLPNUL, HLPMSC
.DATA HLPTW, HLPTP, HLPVE, HLPSEM, HLPRP, HLPDOL
; Special control characters...
.DATA HLPNUL, HLPCTL
.DATA HLPCTS, HLPCTQ, HLPCTO, HLPCTC, HLPCTH, HLPRUB, HLPCTR, HLPCTU

HLPNUL: .DATA 0

; Examine/Deposit commands...
HLPEDC: .TEXT /EXAMINE AND DEPOSIT COMMANDS/
HLPE: .TEXT /E aaaaa[-bbbbb] [, ccccc]\t-> Examine main memory/
HLPEP: .TEXT /EP aaaaa[-bbbbb] [, ccccc]\t-> Examine panel memory/
HLPER: .TEXT /ER [rr]\t\t\t\t-> Examine register/
HLPD: .TEXT /D aaaaa bbbb, [cccc, ...]\t-> Deposit in main memory/
HLPDP: .TEXT /DP aaaaa bbbb, [cccc, ...]\t-> Deposit in panel memory/
HLPDR: .TEXT /DR xx yyyy\t\t\t-> Deposit in register/

; Memory commands...
HLPMEM: .TEXT /MEMORY COMMANDS/
HLPBM: .TEXT /BM aaaaa-bbbbb ddddd\t\t-> Move memory block/
HLPCK: .TEXT /CK aaaaa-bbbbb\t\t\t-> Checksum memory block/
HLPWS: .TEXT /WS vvvv [aaaaa-bbbbb [mmmm]]\t-> Search memory/
HLPFM: .TEXT /FM vvvv [aaaaa-bbbbb]\t\t-> Fill memory/
HLPCM: .TEXT /CM [aaaaa-bbbbb]\t\t-> Clear memory/

; Breakpoint commands...
HLPBPC: .TEXT /BREAKPOINT COMMANDS/
HLPBP: .TEXT /BP aaaaa\t\t\t-> Set breakpoint/
HLPBR: .TEXT /BR [aaaaa]\t\t\t-> Remove breakpoint/
HLPBL: .TEXT /BL\t\t\t\t-> List breakpoints/
HLPP: .TEXT /P\t\t\t\t-> Proceed past breakpoint/

; Program control commands...
HLPPCC: .TEXT /PROGRAM CONTROL COMMANDS/

Page 95

BTS6120_Listing
HLPST: .TEXT /ST [aaaaa]\t\t\t-> Start main memory program/
HLPC: .TEXT /C\t\t\t\t-> Continue execution/
HLPSI: .TEXT /SI\t\t\t\t-> Single instruction/
HLPTR: .TEXT /TR\t\t\t\t-> Trace one instruction/
HLPEX: .TEXT /EX 6xxx\t\t\t\t-> Execute an IOT instruction/
HLPMR: .TEXT /MR\t\t\t\t-> Master reset/

; Disk commands...
HLPDSK: .TEXT /DISK COMMANDS/
HLPLP: .TEXT /LB\t\t\t\t-> Load a BIN paper tape/
HLPRD: .TEXT /RD u [pppp [cccc]]\t\t-> Dump RAM disk page/
HLPRL: .TEXT /RL u\t\t\t\t-> Download RAM disk/
HLPRF: .TEXT /RF u\t\t\t\t-> Format RAM disk/
HLPDD: .TEXT /DD pppp [bbbb [cccc]]\t\t-> Dump IDE disk block/
HLPDL: .TEXT /DL pppp\t\t\t\t-> Download IDE disk/
HLPDF: .TEXT /DF pppp\t\t\t\t-> Format IDE disk/
HLPPM: .TEXT /PM [u] [pppp]\t\t\t-> Edit or review IDE partition map/
HLPPC: .TEXT /PC ssss dddd\t\t\t-> Copy partition ssss to dddd/
HLPB: .TEXT /B [dd]\t\t\t\t-> Boot RAM or IDE disk /

; Other (miscellaneous) commands...
HLPMSC: .TEXT /MISCELLANEOUS COMMANDS/
HLPTW: .TEXT /TW nn\t\t\t\t-> Set the console width/
HLPTP: .TEXT /TP nn\t\t\t\t-> Set the console page length/
HLPVE: .TEXT /VE\t\t\t\t-> Show firmware version/
HLPSEM: .TEXT /aa; bb; cc; dd ...\t\t-> Combine multiple commands/
HLPRP: .TEXT /RP [nn]; A; B; C; ...\t\t-> Repeat commands A, B, C/
HLPDOL: .TEXT /!any text...\t\t\t-> Comment text/

; Special control characters...
HLPCTL: .TEXT /SPECIAL CHARACTERS/
HLPCTS: .TEXT /Control-S (XOFF)\t\t-> Suspend terminal output/
HLPCTQ: .TEXT /Control-Q (XON)\t\t\t-> Resume terminal output/
HLPCTO: .TEXT /Control-O\t\t\t-> Suppress terminal output/
HLPCTC: .TEXT /Control-C\t\t\t-> Abort current operation/
HLPCTH: .TEXT /Control-H (Backspace)\t\t-> Delete the last character entered/
HLPRUB: .TEXT /RUBOUT (Delete)\t\t\t-> Delete the last character entered/
HLPCTR: .TEXT /Control-R\t\t\t-> Retype the current line/
HLPCTU: .TEXT /Control-U\t\t\t-> Erase current line/
� .TITLE Temporary Disk Buffer

; The last two pages of field 1, addresses 17400 thru 17777, are used as a
; temporary disk buffer by the disk load, disk dump, disk format and boot
; commands.

.PAGE 36
DSKBUF: .BLOCK 128.

.PAGE 37

.BLOCK 128.

.END

Page 96

